Normalized defining polynomial
\( x^{25} - 84 x^{23} - 66 x^{22} + 2826 x^{21} + 4072 x^{20} - 48221 x^{19} - 96798 x^{18} + 441736 x^{17} + 1150294 x^{16} - 2099287 x^{15} - 7477592 x^{14} + 3886133 x^{13} + 27115460 x^{12} + 5785190 x^{11} - 52524876 x^{10} - 37286821 x^{9} + 46080424 x^{8} + 57112611 x^{7} - 6485584 x^{6} - 31826729 x^{5} - 10040832 x^{4} + 4451908 x^{3} + 3356864 x^{2} + 718016 x + 51424 \)
Invariants
| Degree: | $25$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[25, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(451947074858779414061989271610218361957576637330801=11^{20}\cdot 31^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(341=11\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{341}(256,·)$, $\chi_{341}(1,·)$, $\chi_{341}(4,·)$, $\chi_{341}(70,·)$, $\chi_{341}(97,·)$, $\chi_{341}(64,·)$, $\chi_{341}(202,·)$, $\chi_{341}(78,·)$, $\chi_{341}(16,·)$, $\chi_{341}(280,·)$, $\chi_{341}(218,·)$, $\chi_{341}(157,·)$, $\chi_{341}(287,·)$, $\chi_{341}(225,·)$, $\chi_{341}(163,·)$, $\chi_{341}(295,·)$, $\chi_{341}(47,·)$, $\chi_{341}(221,·)$, $\chi_{341}(126,·)$, $\chi_{341}(311,·)$, $\chi_{341}(312,·)$, $\chi_{341}(159,·)$, $\chi_{341}(188,·)$, $\chi_{341}(125,·)$, $\chi_{341}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{20} + \frac{1}{10} a^{19} - \frac{1}{5} a^{18} + \frac{1}{10} a^{16} + \frac{1}{10} a^{14} - \frac{1}{5} a^{13} + \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{3}{10} a^{8} + \frac{2}{5} a^{7} + \frac{3}{10} a^{6} + \frac{1}{10} a^{5} + \frac{2}{5} a^{4} + \frac{3}{10} a^{3} + \frac{2}{5} a^{2} - \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{10} a^{21} + \frac{1}{5} a^{19} + \frac{1}{5} a^{18} + \frac{1}{10} a^{17} - \frac{1}{10} a^{16} + \frac{1}{10} a^{15} + \frac{1}{5} a^{14} + \frac{1}{5} a^{13} - \frac{1}{10} a^{11} + \frac{2}{5} a^{10} + \frac{1}{10} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{10} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{1340} a^{22} + \frac{3}{134} a^{21} - \frac{2}{67} a^{20} + \frac{12}{67} a^{19} - \frac{15}{67} a^{18} - \frac{143}{670} a^{17} - \frac{151}{1340} a^{16} - \frac{159}{670} a^{15} + \frac{14}{67} a^{14} + \frac{27}{670} a^{13} + \frac{279}{1340} a^{12} + \frac{77}{670} a^{11} + \frac{637}{1340} a^{10} + \frac{23}{134} a^{9} + \frac{199}{670} a^{8} - \frac{6}{67} a^{7} + \frac{317}{1340} a^{6} - \frac{149}{670} a^{5} - \frac{387}{1340} a^{4} + \frac{76}{335} a^{3} - \frac{11}{1340} a^{2} + \frac{13}{670} a + \frac{167}{335}$, $\frac{1}{1830440} a^{23} - \frac{111}{457610} a^{22} + \frac{529}{228805} a^{21} - \frac{7929}{183044} a^{20} - \frac{8723}{915220} a^{19} + \frac{6366}{228805} a^{18} - \frac{14109}{366088} a^{17} - \frac{17503}{915220} a^{16} + \frac{19178}{228805} a^{15} + \frac{64049}{915220} a^{14} - \frac{405743}{1830440} a^{13} - \frac{31013}{457610} a^{12} + \frac{453189}{1830440} a^{11} + \frac{23185}{91522} a^{10} - \frac{152131}{915220} a^{9} - \frac{37659}{91522} a^{8} - \frac{120497}{366088} a^{7} + \frac{15847}{45761} a^{6} - \frac{440829}{1830440} a^{5} - \frac{16019}{45761} a^{4} - \frac{162473}{366088} a^{3} + \frac{9645}{45761} a^{2} - \frac{204383}{457610} a - \frac{107718}{228805}$, $\frac{1}{512041959180649312867216537789099994176213958379975924056560} a^{24} - \frac{34200156688258790243025581378848826437400847031769359}{256020979590324656433608268894549997088106979189987962028280} a^{23} + \frac{27045211310502333421282135159383550454214392530295738793}{128010489795162328216804134447274998544053489594993981014140} a^{22} + \frac{1743783899154115664006967562176488780292975550945089542119}{256020979590324656433608268894549997088106979189987962028280} a^{21} + \frac{6615248542762704862704826737395527217582395848253664044463}{256020979590324656433608268894549997088106979189987962028280} a^{20} + \frac{31141888656354463676275829736277750784903978702295890171509}{128010489795162328216804134447274998544053489594993981014140} a^{19} - \frac{34510788754346284164826211621119290024363987727112901057069}{512041959180649312867216537789099994176213958379975924056560} a^{18} - \frac{4938554352209955246557248354981714724933994115521334087764}{32002622448790582054201033611818749636013372398748495253535} a^{17} - \frac{5720238501811088290657479723343644419095550860786072995481}{25602097959032465643360826889454999708810697918998796202828} a^{16} + \frac{33700049164267813763243299095131682699652973629394229953003}{256020979590324656433608268894549997088106979189987962028280} a^{15} - \frac{62543570539182685396234537371321440657122963388818138087451}{512041959180649312867216537789099994176213958379975924056560} a^{14} + \frac{45026801412667771363329580380464644613184744665012247409797}{256020979590324656433608268894549997088106979189987962028280} a^{13} - \frac{42213317619205292468085447305337758723626109994727498370667}{512041959180649312867216537789099994176213958379975924056560} a^{12} - \frac{56097342101600727085413320928206239926703379652138371664813}{256020979590324656433608268894549997088106979189987962028280} a^{11} + \frac{15629445515033277132752722549443665512547711376407922736119}{256020979590324656433608268894549997088106979189987962028280} a^{10} + \frac{8554163348377589071330784980174570038431203918005195412894}{32002622448790582054201033611818749636013372398748495253535} a^{9} - \frac{195405580595572236064988592038126539779022956249068522129301}{512041959180649312867216537789099994176213958379975924056560} a^{8} + \frac{125591601037477330368212219767888858249403143096788101191131}{256020979590324656433608268894549997088106979189987962028280} a^{7} - \frac{70084815759092568071889817256571016052788799165679634133957}{512041959180649312867216537789099994176213958379975924056560} a^{6} + \frac{69714520268596121358809119636034139114739063031727974684227}{256020979590324656433608268894549997088106979189987962028280} a^{5} - \frac{60867627249994536733047425225553243318832708706776475575161}{512041959180649312867216537789099994176213958379975924056560} a^{4} - \frac{49110951333679866396768513437616021158491707338064157840041}{256020979590324656433608268894549997088106979189987962028280} a^{3} + \frac{56518354906497096418415958719124523754013422937363595285803}{128010489795162328216804134447274998544053489594993981014140} a^{2} + \frac{2712866844408073293810554600915596659586187758659430969928}{32002622448790582054201033611818749636013372398748495253535} a - \frac{1107553271923041596537129759267486144594242737670901230396}{32002622448790582054201033611818749636013372398748495253535}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $24$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 238326232991215330 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 25 |
| The 25 conjugacy class representatives for $C_5^2$ |
| Character table for $C_5^2$ is not computed |
Intermediate fields
| 5.5.13521270961.2, 5.5.13521270961.4, 5.5.13521270961.3, 5.5.13521270961.1, \(\Q(\zeta_{11})^+\), 5.5.923521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{5}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{5}$ | R | ${\href{/LocalNumberField/37.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 31 | Data not computed | ||||||