Normalized defining polynomial
\( x^{25} - x^{24} - 120 x^{23} + 87 x^{22} + 5789 x^{21} - 2591 x^{20} - 146272 x^{19} + 26182 x^{18} + 2128729 x^{17} + 143339 x^{16} - 18517488 x^{15} - 5136393 x^{14} + 96923558 x^{13} + 42784540 x^{12} - 299088119 x^{11} - 167117297 x^{10} + 510501238 x^{9} + 321873492 x^{8} - 408815960 x^{7} - 263064528 x^{6} + 88908581 x^{5} + 40531608 x^{4} - 2051852 x^{3} - 1066000 x^{2} + 23968 x + 4768 \)
Invariants
| Degree: | $25$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[25, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3909933000788329339715778837921617322655826705601954756001=251^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $201.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $251$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(251\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{251}(64,·)$, $\chi_{251}(1,·)$, $\chi_{251}(4,·)$, $\chi_{251}(5,·)$, $\chi_{251}(243,·)$, $\chi_{251}(201,·)$, $\chi_{251}(204,·)$, $\chi_{251}(16,·)$, $\chi_{251}(211,·)$, $\chi_{251}(20,·)$, $\chi_{251}(149,·)$, $\chi_{251}(25,·)$, $\chi_{251}(91,·)$, $\chi_{251}(94,·)$, $\chi_{251}(69,·)$, $\chi_{251}(80,·)$, $\chi_{251}(219,·)$, $\chi_{251}(100,·)$, $\chi_{251}(241,·)$, $\chi_{251}(113,·)$, $\chi_{251}(51,·)$, $\chi_{251}(249,·)$, $\chi_{251}(123,·)$, $\chi_{251}(125,·)$, $\chi_{251}(63,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{20} - \frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{4} a^{22} - \frac{1}{4} a^{21} - \frac{1}{4} a^{19} + \frac{1}{4} a^{18} + \frac{1}{4} a^{17} - \frac{1}{2} a^{15} + \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{121208485432} a^{23} - \frac{10370875917}{121208485432} a^{22} + \frac{489511409}{15151060679} a^{21} - \frac{26994025605}{121208485432} a^{20} + \frac{39818211969}{121208485432} a^{19} + \frac{45796356201}{121208485432} a^{18} - \frac{2196425189}{15151060679} a^{17} + \frac{4487849885}{60604242716} a^{16} - \frac{49422091839}{121208485432} a^{15} - \frac{18634361177}{121208485432} a^{14} + \frac{4871564544}{15151060679} a^{13} - \frac{11884573277}{121208485432} a^{12} - \frac{19779884391}{60604242716} a^{11} + \frac{857523633}{15151060679} a^{10} - \frac{17086787575}{121208485432} a^{9} + \frac{48549652995}{121208485432} a^{8} - \frac{20853987581}{60604242716} a^{7} + \frac{5782733533}{15151060679} a^{6} + \frac{5972622785}{15151060679} a^{5} + \frac{1011827880}{15151060679} a^{4} + \frac{58225102741}{121208485432} a^{3} + \frac{2058799183}{30302121358} a^{2} - \frac{1589027898}{15151060679} a + \frac{41870118}{101684971}$, $\frac{1}{849002674435058142785698883911957044217974814738987868459101392738951598972463504} a^{24} + \frac{2685198823055260062050152367199729445372512150806488723434098840590093}{849002674435058142785698883911957044217974814738987868459101392738951598972463504} a^{23} - \frac{32788764780947729013378241182072725306138504901295987754016405439039477086483831}{424501337217529071392849441955978522108987407369493934229550696369475799486231752} a^{22} + \frac{102300888351397044077781688319438637616676994371912408083510554719472841184633927}{849002674435058142785698883911957044217974814738987868459101392738951598972463504} a^{21} - \frac{413063950512667622278795549541340153353931388304043191906850033509746960255735241}{849002674435058142785698883911957044217974814738987868459101392738951598972463504} a^{20} + \frac{358221602841819864006926120335815364969913318103352281583920559057383988312523647}{849002674435058142785698883911957044217974814738987868459101392738951598972463504} a^{19} + \frac{70358159661979110011195238440405728175265934376917342309514508853209390851043815}{424501337217529071392849441955978522108987407369493934229550696369475799486231752} a^{18} + \frac{187079513878482780024113919017190660905587784105568448467309576734096308102104107}{424501337217529071392849441955978522108987407369493934229550696369475799486231752} a^{17} + \frac{111506319529548410868561695896192836433612658787474203133726568151765968707331253}{849002674435058142785698883911957044217974814738987868459101392738951598972463504} a^{16} + \frac{297380614821587939529318279148149308540562943674021696871019045162491660131266393}{849002674435058142785698883911957044217974814738987868459101392738951598972463504} a^{15} - \frac{41371211191301174772656963478924923330562811886391300729125838203926325148110215}{424501337217529071392849441955978522108987407369493934229550696369475799486231752} a^{14} + \frac{204071284032248534108024950821802184597415781035751302502644242754887843617877223}{849002674435058142785698883911957044217974814738987868459101392738951598972463504} a^{13} + \frac{22374288605875539377496183515870692891768134584739048541572959142180472903531132}{53062667152191133924106180244497315263623425921186741778693837046184474935778969} a^{12} + \frac{5595753074156370717746522390645600909511235169669887837449240420796868467986375}{106125334304382267848212360488994630527246851842373483557387674092368949871557938} a^{11} - \frac{259855452154240069900897767457151662850628994784152609252295392362512605730170951}{849002674435058142785698883911957044217974814738987868459101392738951598972463504} a^{10} + \frac{117726673448820437905256465970069034109692577203996165015975340564522496813139821}{849002674435058142785698883911957044217974814738987868459101392738951598972463504} a^{9} - \frac{26202416958836623787892460848486475753817753363900214584647226254986763619967206}{53062667152191133924106180244497315263623425921186741778693837046184474935778969} a^{8} + \frac{7807110961369691827443853158155012358513125757757766240953213613228201114925299}{106125334304382267848212360488994630527246851842373483557387674092368949871557938} a^{7} - \frac{25229915108745756386193459900503439689212615918073000031990138649725055313576051}{106125334304382267848212360488994630527246851842373483557387674092368949871557938} a^{6} - \frac{18889724672769491540309475177424993465521993155392203391623276280515468625923008}{53062667152191133924106180244497315263623425921186741778693837046184474935778969} a^{5} + \frac{339430282821266298223830338000565504034003354500826910414805612916111831657852357}{849002674435058142785698883911957044217974814738987868459101392738951598972463504} a^{4} - \frac{12022346704067651247459125316526226731888458697166591912505462114294379333659465}{424501337217529071392849441955978522108987407369493934229550696369475799486231752} a^{3} - \frac{64181542668395966797422662261457054564759100079720298587100961684286961086521145}{212250668608764535696424720977989261054493703684746967114775348184737899743115876} a^{2} + \frac{6177793909777087548709504821757927176999768366300300796273144614768525264884212}{53062667152191133924106180244497315263623425921186741778693837046184474935778969} a + \frac{114524806900702941789216501097701727765922110711410924916968805285704613454717}{356125282900611637074538122446290706467271314907293568984522396283117281448181}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $24$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 795868312785508000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 25 |
| The 25 conjugacy class representatives for $C_{25}$ |
| Character table for $C_{25}$ is not computed |
Intermediate fields
| 5.5.3969126001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{5}$ | $25$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{5}$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{5}$ | $25$ | $25$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 251 | Data not computed | ||||||