Normalized defining polynomial
\( x^{25} - 50 x^{23} + 1025 x^{21} - 11250 x^{19} - 125 x^{18} + 72525 x^{17} + 3100 x^{16} - 283885 x^{15} - 28375 x^{14} + 674550 x^{13} + 121800 x^{12} - 942450 x^{11} - 261005 x^{10} + 718625 x^{9} + 269475 x^{8} - 258425 x^{7} - 117125 x^{6} + 33010 x^{5} + 16625 x^{4} - 1100 x^{3} - 650 x^{2} - 50 x - 1 \)
Invariants
Degree: | $25$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[25, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(338813178901720135627329000271856784820556640625\)\(\medspace = 5^{68}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $79.65$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $25$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(125=5^{3}\) | ||
Dirichlet character group: | $\lbrace$$\chi_{125}(1,·)$, $\chi_{125}(66,·)$, $\chi_{125}(6,·)$, $\chi_{125}(71,·)$, $\chi_{125}(11,·)$, $\chi_{125}(76,·)$, $\chi_{125}(16,·)$, $\chi_{125}(81,·)$, $\chi_{125}(21,·)$, $\chi_{125}(86,·)$, $\chi_{125}(26,·)$, $\chi_{125}(91,·)$, $\chi_{125}(31,·)$, $\chi_{125}(96,·)$, $\chi_{125}(36,·)$, $\chi_{125}(101,·)$, $\chi_{125}(41,·)$, $\chi_{125}(106,·)$, $\chi_{125}(46,·)$, $\chi_{125}(111,·)$, $\chi_{125}(51,·)$, $\chi_{125}(116,·)$, $\chi_{125}(56,·)$, $\chi_{125}(121,·)$, $\chi_{125}(61,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{48443} a^{23} - \frac{8914}{48443} a^{22} - \frac{620}{48443} a^{21} + \frac{13840}{48443} a^{20} + \frac{19910}{48443} a^{19} - \frac{5665}{48443} a^{18} - \frac{4888}{48443} a^{17} - \frac{7999}{48443} a^{16} + \frac{5969}{48443} a^{15} - \frac{3058}{48443} a^{14} + \frac{3253}{48443} a^{13} - \frac{18499}{48443} a^{12} + \frac{653}{48443} a^{11} - \frac{19}{48443} a^{10} - \frac{10051}{48443} a^{9} + \frac{17976}{48443} a^{8} - \frac{6864}{48443} a^{7} + \frac{6278}{48443} a^{6} - \frac{17208}{48443} a^{5} + \frac{23496}{48443} a^{4} + \frac{23755}{48443} a^{3} - \frac{21505}{48443} a^{2} - \frac{19512}{48443} a + \frac{18911}{48443}$, $\frac{1}{939614457656128672722660751801576776443} a^{24} + \frac{2208671930602834541315852043369777}{939614457656128672722660751801576776443} a^{23} - \frac{445856917464052609043804055864261185541}{939614457656128672722660751801576776443} a^{22} + \frac{316847791412327049866719576806175102083}{939614457656128672722660751801576776443} a^{21} - \frac{228354781568471371212343056096758725436}{939614457656128672722660751801576776443} a^{20} + \frac{274138170154871506019712788286411158254}{939614457656128672722660751801576776443} a^{19} + \frac{186873890186705868615473673448229529452}{939614457656128672722660751801576776443} a^{18} - \frac{371107551704899082527747529097449125840}{939614457656128672722660751801576776443} a^{17} + \frac{50662207847557522105671813632103828642}{939614457656128672722660751801576776443} a^{16} - \frac{83970657139526369542637251456689405582}{939614457656128672722660751801576776443} a^{15} + \frac{91592491938221242860581934288678337250}{939614457656128672722660751801576776443} a^{14} - \frac{28082399223187915929349037674785984072}{939614457656128672722660751801576776443} a^{13} - \frac{89048376692509386181452678544023093911}{939614457656128672722660751801576776443} a^{12} + \frac{419970588698717848022015765066201107358}{939614457656128672722660751801576776443} a^{11} + \frac{64515609990965187177519011765340294950}{939614457656128672722660751801576776443} a^{10} + \frac{33485471872995534021957304472335699695}{939614457656128672722660751801576776443} a^{9} + \frac{444965568721767485563473600905679769612}{939614457656128672722660751801576776443} a^{8} + \frac{313541698658954916103383017345359934962}{939614457656128672722660751801576776443} a^{7} + \frac{59380587804770555742648656190594523334}{939614457656128672722660751801576776443} a^{6} - \frac{394233703010706138483127208037309275}{3060633412560679715708992676878100249} a^{5} - \frac{270498902170414391382684053738187573758}{939614457656128672722660751801576776443} a^{4} + \frac{314864478514818487709163087750354843823}{939614457656128672722660751801576776443} a^{3} + \frac{216738722359055332867642428542718772419}{939614457656128672722660751801576776443} a^{2} + \frac{357692355498757990998870524111377297026}{939614457656128672722660751801576776443} a + \frac{202743076695873548614388376309087464644}{939614457656128672722660751801576776443}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $24$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 5798047530670207.0 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 25 |
The 25 conjugacy class representatives for $C_{25}$ |
Character table for $C_{25}$ is not computed |
Intermediate fields
5.5.390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $25$ | $25$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{5}$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{5}$ | $25$ | $25$ | $25$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
5 | Data not computed |