Normalized defining polynomial
\( x^{25} - 550 x^{23} + 124025 x^{21} - 14973750 x^{19} - 15125 x^{18} + 1062050275 x^{17} + 4126100 x^{16} - 45731609385 x^{15} - 415438375 x^{14} + 1194622146300 x^{13} + 22243405800 x^{12} - 18421283506450 x^{11} - 678182906005 x^{10} + 159208867549875 x^{9} + 9127440610475 x^{8} - 719226536302175 x^{7} - 22665313001375 x^{6} + 1547329331945760 x^{5} - 51166647560875 x^{4} - 1243323318639600 x^{3} + 164764650851350 x^{2} + 48016300765950 x - 6753826844501 \)
Invariants
| Degree: | $25$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[25, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(227936564389216769066972959924266550757465665810741484165191650390625=5^{68}\cdot 11^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $542.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1375=5^{3}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1375}(1,·)$, $\chi_{1375}(196,·)$, $\chi_{1375}(1281,·)$, $\chi_{1375}(456,·)$, $\chi_{1375}(586,·)$, $\chi_{1375}(1291,·)$, $\chi_{1375}(1101,·)$, $\chi_{1375}(1296,·)$, $\chi_{1375}(466,·)$, $\chi_{1375}(276,·)$, $\chi_{1375}(471,·)$, $\chi_{1375}(731,·)$, $\chi_{1375}(861,·)$, $\chi_{1375}(36,·)$, $\chi_{1375}(741,·)$, $\chi_{1375}(551,·)$, $\chi_{1375}(746,·)$, $\chi_{1375}(1006,·)$, $\chi_{1375}(1136,·)$, $\chi_{1375}(181,·)$, $\chi_{1375}(311,·)$, $\chi_{1375}(1016,·)$, $\chi_{1375}(826,·)$, $\chi_{1375}(1021,·)$, $\chi_{1375}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{11} a^{5}$, $\frac{1}{11} a^{6}$, $\frac{1}{11} a^{7}$, $\frac{1}{11} a^{8}$, $\frac{1}{11} a^{9}$, $\frac{1}{121} a^{10}$, $\frac{1}{121} a^{11}$, $\frac{1}{121} a^{12}$, $\frac{1}{121} a^{13}$, $\frac{1}{121} a^{14}$, $\frac{1}{1331} a^{15}$, $\frac{1}{1331} a^{16}$, $\frac{1}{1331} a^{17}$, $\frac{1}{1331} a^{18}$, $\frac{1}{1331} a^{19}$, $\frac{1}{14641} a^{20}$, $\frac{1}{14641} a^{21}$, $\frac{1}{14641} a^{22}$, $\frac{1}{14641} a^{23}$, $\frac{1}{53635025962612926577049342176353483306465579292548412823404002454819930045723942484759227174424450689973002724367706979344333372405515593091322591} a^{24} - \frac{680465661023210142783513658297520532643856694210202294828598241645122117683961583980463712414172945451675507050448983719474698122678948699929}{53635025962612926577049342176353483306465579292548412823404002454819930045723942484759227174424450689973002724367706979344333372405515593091322591} a^{23} - \frac{927076182029345419638132934858923112360366799137836498546284272151173375212054863032884312675892076847467711264503530330346208880779766676156}{53635025962612926577049342176353483306465579292548412823404002454819930045723942484759227174424450689973002724367706979344333372405515593091322591} a^{22} - \frac{112045007232856648857293945632526736759392016010194717540397789845944235780854720949167820963646678878262354536228089342896911291053238609179}{53635025962612926577049342176353483306465579292548412823404002454819930045723942484759227174424450689973002724367706979344333372405515593091322591} a^{21} - \frac{570234724165931682593688908762259384104566886101073790336782807789304179275399790248449634856595916297516478863991897676703541407682499960577}{53635025962612926577049342176353483306465579292548412823404002454819930045723942484759227174424450689973002724367706979344333372405515593091322591} a^{20} + \frac{1219381865811163819541301974670027773553815453400215542104864375032717812160580016978077581255713668827380349952585524292743174857786303183721}{4875911451146629688822667470577589391496870844777128438491272950438175458702176589523566106765859153633909338578882452667666670218683235735574781} a^{19} - \frac{1323246790194389380175349154957477559823962907131822497137546320028250417361990443235052722506198837230016330152511963358429929552453434705756}{4875911451146629688822667470577589391496870844777128438491272950438175458702176589523566106765859153633909338578882452667666670218683235735574781} a^{18} - \frac{1357346108074826001742136161869664982796563030829711044897008597853062300942661525412415138701159156236591036569371203275012511156678121732385}{4875911451146629688822667470577589391496870844777128438491272950438175458702176589523566106765859153633909338578882452667666670218683235735574781} a^{17} - \frac{450061634627687094813041168357355543116183947489873901452155591917883746903606453756049002009354985856921369226843575214544433215787464510442}{4875911451146629688822667470577589391496870844777128438491272950438175458702176589523566106765859153633909338578882452667666670218683235735574781} a^{16} + \frac{180357815188656919265245864594173700296056671115144161869255810347233360418067718253724519248336364744905161009890653446673953108983218347549}{4875911451146629688822667470577589391496870844777128438491272950438175458702176589523566106765859153633909338578882452667666670218683235735574781} a^{15} - \frac{898486021428908488167140586501338173627458656483075789296287130854709865945290280094104733012769392875986974543518265401907807586677221900231}{443264677376966335347515224597962671954260985888829858044661177312561405336561508138506009705987195784900848961716586606151515474425748703234071} a^{14} - \frac{830590647398471326190518766787711115087610163817551163131713471381672612446023818545477645570542582757692823738916345683169657748989003605853}{443264677376966335347515224597962671954260985888829858044661177312561405336561508138506009705987195784900848961716586606151515474425748703234071} a^{13} - \frac{751948564198579775091006062260698405018376152888681886471724100786281873433879542357811937260788746420747817930752457089383425904900207100476}{443264677376966335347515224597962671954260985888829858044661177312561405336561508138506009705987195784900848961716586606151515474425748703234071} a^{12} + \frac{1575652407162942068365401902940141863794027967426812353829968864770679527966976046029546816755746334296100973075944268422071751478703212722537}{443264677376966335347515224597962671954260985888829858044661177312561405336561508138506009705987195784900848961716586606151515474425748703234071} a^{11} - \frac{1054117931030763989997650171195856991743245217410230038674238531337632135234409647801707040119504672826112214980774162686869306310250638671873}{443264677376966335347515224597962671954260985888829858044661177312561405336561508138506009705987195784900848961716586606151515474425748703234071} a^{10} - \frac{562349720643299336418780388192227683398812011030003918896633566609681310338245707941006878173652486630904374533465493036920624293415823570732}{40296788852451485031592293145269333814023725989893623458605561573869218666960137103500546336907926889536440814701507873286501406765977154839461} a^{9} + \frac{1749683088934572046679472293545016284276223804957688834050322170347788140471105243593221314330432670098487255591901770931653440828703060538116}{40296788852451485031592293145269333814023725989893623458605561573869218666960137103500546336907926889536440814701507873286501406765977154839461} a^{8} + \frac{801431713932377074740052451005323727743701933982309901452323688245308657036246980102301867624338909297507376743132638925180470757539259338076}{40296788852451485031592293145269333814023725989893623458605561573869218666960137103500546336907926889536440814701507873286501406765977154839461} a^{7} + \frac{218739728791385986331500656940092516447744452349738295610523626110075733455253155312797497159537395162158521788958369200846214720628292252372}{40296788852451485031592293145269333814023725989893623458605561573869218666960137103500546336907926889536440814701507873286501406765977154839461} a^{6} - \frac{674217534989593092043609621503371082966122833897481842434238362837293855839731838380727105420963447132247125797089167239036211658572268099870}{40296788852451485031592293145269333814023725989893623458605561573869218666960137103500546336907926889536440814701507873286501406765977154839461} a^{5} + \frac{682517087088369338432807467138205131844419930823437784935336917255400433255739665385135197490784378822529299274439558001227703291684309048453}{3663344441131953184690208467751757619456702362717602132600505597624474424269103373045504212446175171776040074063773443026045582433270650439951} a^{4} + \frac{395472854871985581759809886191030837184651693564961588748648296983182326304846639902620866993144741986498398360775746178474873884663085164202}{3663344441131953184690208467751757619456702362717602132600505597624474424269103373045504212446175171776040074063773443026045582433270650439951} a^{3} - \frac{1485136753433760036215525239743724813957149455072673522962761451446213525585938276875837041001938908929817859296788815764019132185338291154125}{3663344441131953184690208467751757619456702362717602132600505597624474424269103373045504212446175171776040074063773443026045582433270650439951} a^{2} + \frac{519712385702919837113739595248640374219863148105833146320819144307086434681850670040779677287869818476369912251570428894395937663952064419641}{3663344441131953184690208467751757619456702362717602132600505597624474424269103373045504212446175171776040074063773443026045582433270650439951} a + \frac{1493304819969952542599118729654639288217863915972313084377666333963202003615774455918250189308822614637954889556785857812776800225085093549}{3485579867870554885528266857994060532308946111053855501998578113819671193405426615647482599853639554496707967710536101832583808214339343901}$
Class group and class number
Not computed
Unit group
| Rank: | $24$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 25 |
| The 25 conjugacy class representatives for $C_{25}$ |
| Character table for $C_{25}$ is not computed |
Intermediate fields
| 5.5.390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $25$ | $25$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{5}$ | R | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{5}$ | $25$ | $25$ | $25$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||