Normalized defining polynomial
\( x^{25} - x^{24} - 72 x^{23} + 161 x^{22} + 1991 x^{21} - 6935 x^{20} - 23789 x^{19} + 131523 x^{18} + 59219 x^{17} - 1219472 x^{16} + 1274267 x^{15} + 5134575 x^{14} - 12138942 x^{13} - 4263646 x^{12} + 39567816 x^{11} - 30337248 x^{10} - 42180110 x^{9} + 75903945 x^{8} - 9872226 x^{7} - 55689151 x^{6} + 38006340 x^{5} + 5737119 x^{4} - 14814116 x^{3} + 5029783 x^{2} - 190198 x - 111103 \)
Invariants
| Degree: | $25$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[25, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19744527036368077698033828496963106435582783749713601=151^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(151\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{151}(64,·)$, $\chi_{151}(1,·)$, $\chi_{151}(68,·)$, $\chi_{151}(8,·)$, $\chi_{151}(9,·)$, $\chi_{151}(78,·)$, $\chi_{151}(81,·)$, $\chi_{151}(19,·)$, $\chi_{151}(148,·)$, $\chi_{151}(86,·)$, $\chi_{151}(20,·)$, $\chi_{151}(91,·)$, $\chi_{151}(29,·)$, $\chi_{151}(94,·)$, $\chi_{151}(98,·)$, $\chi_{151}(123,·)$, $\chi_{151}(44,·)$, $\chi_{151}(110,·)$, $\chi_{151}(72,·)$, $\chi_{151}(50,·)$, $\chi_{151}(84,·)$, $\chi_{151}(59,·)$, $\chi_{151}(124,·)$, $\chi_{151}(125,·)$, $\chi_{151}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{19} - \frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{9902} a^{23} + \frac{825}{4951} a^{22} + \frac{743}{9902} a^{21} - \frac{899}{9902} a^{20} + \frac{2090}{4951} a^{19} + \frac{608}{4951} a^{18} + \frac{367}{9902} a^{17} - \frac{249}{9902} a^{16} - \frac{983}{9902} a^{15} + \frac{560}{4951} a^{14} + \frac{2205}{9902} a^{13} + \frac{4473}{9902} a^{12} - \frac{707}{9902} a^{11} - \frac{1027}{4951} a^{10} - \frac{1791}{9902} a^{9} - \frac{2493}{9902} a^{8} - \frac{3721}{9902} a^{7} + \frac{1748}{4951} a^{6} - \frac{2441}{4951} a^{5} + \frac{3485}{9902} a^{4} - \frac{1675}{9902} a^{3} + \frac{1510}{4951} a^{2} - \frac{3233}{9902} a - \frac{82}{4951}$, $\frac{1}{31335750610491467928713004214203381748701982} a^{24} - \frac{1414994768870322738520550467726262122519}{31335750610491467928713004214203381748701982} a^{23} - \frac{785613088551598966794759090262989592587209}{15667875305245733964356502107101690874350991} a^{22} + \frac{87588958167476472392364034901729789573636}{15667875305245733964356502107101690874350991} a^{21} + \frac{2874401340896817677891309660619515750037936}{15667875305245733964356502107101690874350991} a^{20} + \frac{14296069071368327650884207111820747447787}{116489779221157873340940536112280229549078} a^{19} + \frac{5631024277406501898970251623381012160177837}{31335750610491467928713004214203381748701982} a^{18} + \frac{3252684240727596451185476026670866345422698}{15667875305245733964356502107101690874350991} a^{17} - \frac{25126237428539574062321129047811808048865}{74431711663875220733285045639437961398342} a^{16} + \frac{4436809223869170542584810194762717151166716}{15667875305245733964356502107101690874350991} a^{15} - \frac{3383805693667320294240567335796768070162851}{15667875305245733964356502107101690874350991} a^{14} + \frac{5292426683763047193746837817856059216522838}{15667875305245733964356502107101690874350991} a^{13} - \frac{7681541447709460036886735228258800903552069}{31335750610491467928713004214203381748701982} a^{12} - \frac{1858518415908326861360889365680059621480543}{15667875305245733964356502107101690874350991} a^{11} + \frac{7448904577138316857874780339508251889987707}{15667875305245733964356502107101690874350991} a^{10} - \frac{4985878330478104578480032727822462736615612}{15667875305245733964356502107101690874350991} a^{9} - \frac{6397954204946101676619943049473537305687561}{31335750610491467928713004214203381748701982} a^{8} - \frac{6297798984237911890879487471942920049362202}{15667875305245733964356502107101690874350991} a^{7} - \frac{14464693768642534382949826906047020721048411}{31335750610491467928713004214203381748701982} a^{6} - \frac{8566132481832902859501959877299783177643705}{31335750610491467928713004214203381748701982} a^{5} - \frac{1939689839997217579875230936265232177504804}{15667875305245733964356502107101690874350991} a^{4} + \frac{5726408672171585031297737403653038926413426}{15667875305245733964356502107101690874350991} a^{3} - \frac{4769726543620585356127431422923609073514811}{15667875305245733964356502107101690874350991} a^{2} + \frac{4795645749495432919590091715900465186600335}{31335750610491467928713004214203381748701982} a + \frac{375494654381132835782370572989183070921865}{31335750610491467928713004214203381748701982}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $24$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1066553081453288300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 25 |
| The 25 conjugacy class representatives for $C_{25}$ |
| Character table for $C_{25}$ is not computed |
Intermediate fields
| 5.5.519885601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{5}$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{5}$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{5}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 151 | Data not computed | ||||||