Properties

Label 25.25.197...601.1
Degree $25$
Signature $[25, 0]$
Discriminant $1.974\times 10^{52}$
Root discriminant \(123.54\)
Ramified prime $151$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{25}$ (as 25T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^25 - x^24 - 72*x^23 + 161*x^22 + 1991*x^21 - 6935*x^20 - 23789*x^19 + 131523*x^18 + 59219*x^17 - 1219472*x^16 + 1274267*x^15 + 5134575*x^14 - 12138942*x^13 - 4263646*x^12 + 39567816*x^11 - 30337248*x^10 - 42180110*x^9 + 75903945*x^8 - 9872226*x^7 - 55689151*x^6 + 38006340*x^5 + 5737119*x^4 - 14814116*x^3 + 5029783*x^2 - 190198*x - 111103)
 
gp: K = bnfinit(y^25 - y^24 - 72*y^23 + 161*y^22 + 1991*y^21 - 6935*y^20 - 23789*y^19 + 131523*y^18 + 59219*y^17 - 1219472*y^16 + 1274267*y^15 + 5134575*y^14 - 12138942*y^13 - 4263646*y^12 + 39567816*y^11 - 30337248*y^10 - 42180110*y^9 + 75903945*y^8 - 9872226*y^7 - 55689151*y^6 + 38006340*y^5 + 5737119*y^4 - 14814116*y^3 + 5029783*y^2 - 190198*y - 111103, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^25 - x^24 - 72*x^23 + 161*x^22 + 1991*x^21 - 6935*x^20 - 23789*x^19 + 131523*x^18 + 59219*x^17 - 1219472*x^16 + 1274267*x^15 + 5134575*x^14 - 12138942*x^13 - 4263646*x^12 + 39567816*x^11 - 30337248*x^10 - 42180110*x^9 + 75903945*x^8 - 9872226*x^7 - 55689151*x^6 + 38006340*x^5 + 5737119*x^4 - 14814116*x^3 + 5029783*x^2 - 190198*x - 111103);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 - x^24 - 72*x^23 + 161*x^22 + 1991*x^21 - 6935*x^20 - 23789*x^19 + 131523*x^18 + 59219*x^17 - 1219472*x^16 + 1274267*x^15 + 5134575*x^14 - 12138942*x^13 - 4263646*x^12 + 39567816*x^11 - 30337248*x^10 - 42180110*x^9 + 75903945*x^8 - 9872226*x^7 - 55689151*x^6 + 38006340*x^5 + 5737119*x^4 - 14814116*x^3 + 5029783*x^2 - 190198*x - 111103)
 

\( x^{25} - x^{24} - 72 x^{23} + 161 x^{22} + 1991 x^{21} - 6935 x^{20} - 23789 x^{19} + 131523 x^{18} + \cdots - 111103 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $25$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[25, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(19744527036368077698033828496963106435582783749713601\) \(\medspace = 151^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(123.54\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $151^{24/25}\approx 123.5429221353915$
Ramified primes:   \(151\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $25$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(151\)
Dirichlet character group:    $\lbrace$$\chi_{151}(64,·)$, $\chi_{151}(1,·)$, $\chi_{151}(68,·)$, $\chi_{151}(8,·)$, $\chi_{151}(9,·)$, $\chi_{151}(78,·)$, $\chi_{151}(81,·)$, $\chi_{151}(19,·)$, $\chi_{151}(148,·)$, $\chi_{151}(86,·)$, $\chi_{151}(20,·)$, $\chi_{151}(91,·)$, $\chi_{151}(29,·)$, $\chi_{151}(94,·)$, $\chi_{151}(98,·)$, $\chi_{151}(123,·)$, $\chi_{151}(44,·)$, $\chi_{151}(110,·)$, $\chi_{151}(72,·)$, $\chi_{151}(50,·)$, $\chi_{151}(84,·)$, $\chi_{151}(59,·)$, $\chi_{151}(124,·)$, $\chi_{151}(125,·)$, $\chi_{151}(127,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{2}a^{20}-\frac{1}{2}a^{19}-\frac{1}{2}a^{18}-\frac{1}{2}a^{17}-\frac{1}{2}a^{15}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{21}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{13}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{22}-\frac{1}{2}a^{18}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}-\frac{1}{2}a^{14}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{9902}a^{23}+\frac{825}{4951}a^{22}+\frac{743}{9902}a^{21}-\frac{899}{9902}a^{20}+\frac{2090}{4951}a^{19}+\frac{608}{4951}a^{18}+\frac{367}{9902}a^{17}-\frac{249}{9902}a^{16}-\frac{983}{9902}a^{15}+\frac{560}{4951}a^{14}+\frac{2205}{9902}a^{13}+\frac{4473}{9902}a^{12}-\frac{707}{9902}a^{11}-\frac{1027}{4951}a^{10}-\frac{1791}{9902}a^{9}-\frac{2493}{9902}a^{8}-\frac{3721}{9902}a^{7}+\frac{1748}{4951}a^{6}-\frac{2441}{4951}a^{5}+\frac{3485}{9902}a^{4}-\frac{1675}{9902}a^{3}+\frac{1510}{4951}a^{2}-\frac{3233}{9902}a-\frac{82}{4951}$, $\frac{1}{31\!\cdots\!82}a^{24}-\frac{14\!\cdots\!19}{31\!\cdots\!82}a^{23}-\frac{78\!\cdots\!09}{15\!\cdots\!91}a^{22}+\frac{87\!\cdots\!36}{15\!\cdots\!91}a^{21}+\frac{28\!\cdots\!36}{15\!\cdots\!91}a^{20}+\frac{14\!\cdots\!87}{11\!\cdots\!78}a^{19}+\frac{56\!\cdots\!37}{31\!\cdots\!82}a^{18}+\frac{32\!\cdots\!98}{15\!\cdots\!91}a^{17}-\frac{25\!\cdots\!65}{74\!\cdots\!42}a^{16}+\frac{44\!\cdots\!16}{15\!\cdots\!91}a^{15}-\frac{33\!\cdots\!51}{15\!\cdots\!91}a^{14}+\frac{52\!\cdots\!38}{15\!\cdots\!91}a^{13}-\frac{76\!\cdots\!69}{31\!\cdots\!82}a^{12}-\frac{18\!\cdots\!43}{15\!\cdots\!91}a^{11}+\frac{74\!\cdots\!07}{15\!\cdots\!91}a^{10}-\frac{49\!\cdots\!12}{15\!\cdots\!91}a^{9}-\frac{63\!\cdots\!61}{31\!\cdots\!82}a^{8}-\frac{62\!\cdots\!02}{15\!\cdots\!91}a^{7}-\frac{14\!\cdots\!11}{31\!\cdots\!82}a^{6}-\frac{85\!\cdots\!05}{31\!\cdots\!82}a^{5}-\frac{19\!\cdots\!04}{15\!\cdots\!91}a^{4}+\frac{57\!\cdots\!26}{15\!\cdots\!91}a^{3}-\frac{47\!\cdots\!11}{15\!\cdots\!91}a^{2}+\frac{47\!\cdots\!35}{31\!\cdots\!82}a+\frac{37\!\cdots\!65}{31\!\cdots\!82}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $24$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{44\!\cdots\!75}{15\!\cdots\!91}a^{24}+\frac{27\!\cdots\!82}{15\!\cdots\!91}a^{23}-\frac{31\!\cdots\!32}{15\!\cdots\!91}a^{22}+\frac{41\!\cdots\!75}{31\!\cdots\!82}a^{21}+\frac{91\!\cdots\!35}{15\!\cdots\!91}a^{20}-\frac{59\!\cdots\!96}{58\!\cdots\!39}a^{19}-\frac{13\!\cdots\!72}{15\!\cdots\!91}a^{18}+\frac{74\!\cdots\!13}{31\!\cdots\!82}a^{17}+\frac{41\!\cdots\!09}{74\!\cdots\!42}a^{16}-\frac{80\!\cdots\!59}{31\!\cdots\!82}a^{15}-\frac{83\!\cdots\!79}{15\!\cdots\!91}a^{14}+\frac{42\!\cdots\!95}{31\!\cdots\!82}a^{13}-\frac{19\!\cdots\!86}{15\!\cdots\!91}a^{12}-\frac{50\!\cdots\!95}{15\!\cdots\!91}a^{11}+\frac{95\!\cdots\!42}{15\!\cdots\!91}a^{10}+\frac{18\!\cdots\!14}{15\!\cdots\!91}a^{9}-\frac{31\!\cdots\!89}{31\!\cdots\!82}a^{8}+\frac{83\!\cdots\!59}{15\!\cdots\!91}a^{7}+\frac{18\!\cdots\!27}{31\!\cdots\!82}a^{6}-\frac{20\!\cdots\!41}{31\!\cdots\!82}a^{5}+\frac{86\!\cdots\!89}{31\!\cdots\!82}a^{4}+\frac{32\!\cdots\!66}{15\!\cdots\!91}a^{3}-\frac{13\!\cdots\!22}{15\!\cdots\!91}a^{2}+\frac{71\!\cdots\!85}{15\!\cdots\!91}a+\frac{61\!\cdots\!03}{31\!\cdots\!82}$, $\frac{12\!\cdots\!19}{31\!\cdots\!82}a^{24}+\frac{34\!\cdots\!46}{15\!\cdots\!91}a^{23}-\frac{43\!\cdots\!37}{15\!\cdots\!91}a^{22}+\frac{59\!\cdots\!11}{31\!\cdots\!82}a^{21}+\frac{12\!\cdots\!48}{15\!\cdots\!91}a^{20}-\frac{83\!\cdots\!40}{58\!\cdots\!39}a^{19}-\frac{18\!\cdots\!36}{15\!\cdots\!91}a^{18}+\frac{51\!\cdots\!86}{15\!\cdots\!91}a^{17}+\frac{28\!\cdots\!61}{37\!\cdots\!71}a^{16}-\frac{55\!\cdots\!86}{15\!\cdots\!91}a^{15}-\frac{11\!\cdots\!64}{15\!\cdots\!91}a^{14}+\frac{59\!\cdots\!07}{31\!\cdots\!82}a^{13}-\frac{53\!\cdots\!17}{31\!\cdots\!82}a^{12}-\frac{69\!\cdots\!54}{15\!\cdots\!91}a^{11}+\frac{26\!\cdots\!49}{31\!\cdots\!82}a^{10}+\frac{25\!\cdots\!40}{15\!\cdots\!91}a^{9}-\frac{43\!\cdots\!79}{31\!\cdots\!82}a^{8}+\frac{23\!\cdots\!41}{31\!\cdots\!82}a^{7}+\frac{24\!\cdots\!41}{31\!\cdots\!82}a^{6}-\frac{14\!\cdots\!84}{15\!\cdots\!91}a^{5}+\frac{12\!\cdots\!75}{31\!\cdots\!82}a^{4}+\frac{44\!\cdots\!70}{15\!\cdots\!91}a^{3}-\frac{37\!\cdots\!67}{31\!\cdots\!82}a^{2}+\frac{19\!\cdots\!63}{31\!\cdots\!82}a+\frac{42\!\cdots\!47}{15\!\cdots\!91}$, $\frac{25\!\cdots\!73}{31\!\cdots\!82}a^{24}+\frac{37\!\cdots\!21}{31\!\cdots\!82}a^{23}-\frac{92\!\cdots\!63}{15\!\cdots\!91}a^{22}+\frac{98\!\cdots\!73}{15\!\cdots\!91}a^{21}+\frac{26\!\cdots\!64}{15\!\cdots\!91}a^{20}-\frac{42\!\cdots\!21}{11\!\cdots\!78}a^{19}-\frac{75\!\cdots\!69}{31\!\cdots\!82}a^{18}+\frac{12\!\cdots\!18}{15\!\cdots\!91}a^{17}+\frac{11\!\cdots\!83}{74\!\cdots\!42}a^{16}-\frac{12\!\cdots\!03}{15\!\cdots\!91}a^{15}+\frac{12\!\cdots\!65}{15\!\cdots\!91}a^{14}+\frac{67\!\cdots\!55}{15\!\cdots\!91}a^{13}-\frac{14\!\cdots\!51}{31\!\cdots\!82}a^{12}-\frac{15\!\cdots\!02}{15\!\cdots\!91}a^{11}+\frac{32\!\cdots\!32}{15\!\cdots\!91}a^{10}+\frac{29\!\cdots\!50}{15\!\cdots\!91}a^{9}-\frac{10\!\cdots\!31}{31\!\cdots\!82}a^{8}+\frac{30\!\cdots\!64}{15\!\cdots\!91}a^{7}+\frac{57\!\cdots\!79}{31\!\cdots\!82}a^{6}-\frac{71\!\cdots\!27}{31\!\cdots\!82}a^{5}+\frac{24\!\cdots\!88}{15\!\cdots\!91}a^{4}+\frac{11\!\cdots\!76}{15\!\cdots\!91}a^{3}-\frac{47\!\cdots\!14}{15\!\cdots\!91}a^{2}+\frac{52\!\cdots\!61}{31\!\cdots\!82}a+\frac{21\!\cdots\!03}{31\!\cdots\!82}$, $\frac{10\!\cdots\!61}{31\!\cdots\!82}a^{24}+\frac{75\!\cdots\!97}{31\!\cdots\!82}a^{23}-\frac{77\!\cdots\!63}{31\!\cdots\!82}a^{22}+\frac{22\!\cdots\!25}{15\!\cdots\!91}a^{21}+\frac{22\!\cdots\!97}{31\!\cdots\!82}a^{20}-\frac{70\!\cdots\!30}{58\!\cdots\!39}a^{19}-\frac{32\!\cdots\!59}{31\!\cdots\!82}a^{18}+\frac{44\!\cdots\!95}{15\!\cdots\!91}a^{17}+\frac{25\!\cdots\!25}{37\!\cdots\!71}a^{16}-\frac{97\!\cdots\!31}{31\!\cdots\!82}a^{15}-\frac{23\!\cdots\!07}{31\!\cdots\!82}a^{14}+\frac{26\!\cdots\!63}{15\!\cdots\!91}a^{13}-\frac{22\!\cdots\!08}{15\!\cdots\!91}a^{12}-\frac{12\!\cdots\!73}{31\!\cdots\!82}a^{11}+\frac{22\!\cdots\!59}{31\!\cdots\!82}a^{10}+\frac{24\!\cdots\!35}{15\!\cdots\!91}a^{9}-\frac{18\!\cdots\!60}{15\!\cdots\!91}a^{8}+\frac{19\!\cdots\!63}{31\!\cdots\!82}a^{7}+\frac{10\!\cdots\!38}{15\!\cdots\!91}a^{6}-\frac{24\!\cdots\!63}{31\!\cdots\!82}a^{5}+\frac{45\!\cdots\!24}{15\!\cdots\!91}a^{4}+\frac{77\!\cdots\!33}{31\!\cdots\!82}a^{3}-\frac{31\!\cdots\!55}{31\!\cdots\!82}a^{2}+\frac{16\!\cdots\!47}{31\!\cdots\!82}a+\frac{36\!\cdots\!00}{15\!\cdots\!91}$, $\frac{46\!\cdots\!33}{31\!\cdots\!82}a^{24}+\frac{12\!\cdots\!51}{15\!\cdots\!91}a^{23}-\frac{32\!\cdots\!51}{31\!\cdots\!82}a^{22}+\frac{24\!\cdots\!07}{31\!\cdots\!82}a^{21}+\frac{95\!\cdots\!73}{31\!\cdots\!82}a^{20}-\frac{65\!\cdots\!33}{11\!\cdots\!78}a^{19}-\frac{68\!\cdots\!74}{15\!\cdots\!91}a^{18}+\frac{20\!\cdots\!23}{15\!\cdots\!91}a^{17}+\frac{20\!\cdots\!35}{74\!\cdots\!42}a^{16}-\frac{43\!\cdots\!69}{31\!\cdots\!82}a^{15}-\frac{60\!\cdots\!87}{31\!\cdots\!82}a^{14}+\frac{22\!\cdots\!77}{31\!\cdots\!82}a^{13}-\frac{10\!\cdots\!87}{15\!\cdots\!91}a^{12}-\frac{52\!\cdots\!73}{31\!\cdots\!82}a^{11}+\frac{51\!\cdots\!75}{15\!\cdots\!91}a^{10}+\frac{82\!\cdots\!70}{15\!\cdots\!91}a^{9}-\frac{85\!\cdots\!69}{15\!\cdots\!91}a^{8}+\frac{46\!\cdots\!60}{15\!\cdots\!91}a^{7}+\frac{48\!\cdots\!63}{15\!\cdots\!91}a^{6}-\frac{56\!\cdots\!07}{15\!\cdots\!91}a^{5}+\frac{52\!\cdots\!73}{31\!\cdots\!82}a^{4}+\frac{35\!\cdots\!07}{31\!\cdots\!82}a^{3}-\frac{73\!\cdots\!73}{15\!\cdots\!91}a^{2}+\frac{74\!\cdots\!49}{31\!\cdots\!82}a+\frac{33\!\cdots\!17}{31\!\cdots\!82}$, $\frac{12\!\cdots\!19}{15\!\cdots\!91}a^{24}+\frac{69\!\cdots\!92}{15\!\cdots\!91}a^{23}-\frac{86\!\cdots\!74}{15\!\cdots\!91}a^{22}+\frac{59\!\cdots\!11}{15\!\cdots\!91}a^{21}+\frac{25\!\cdots\!96}{15\!\cdots\!91}a^{20}-\frac{16\!\cdots\!80}{58\!\cdots\!39}a^{19}-\frac{36\!\cdots\!72}{15\!\cdots\!91}a^{18}+\frac{10\!\cdots\!72}{15\!\cdots\!91}a^{17}+\frac{56\!\cdots\!22}{37\!\cdots\!71}a^{16}-\frac{11\!\cdots\!72}{15\!\cdots\!91}a^{15}-\frac{22\!\cdots\!28}{15\!\cdots\!91}a^{14}+\frac{59\!\cdots\!07}{15\!\cdots\!91}a^{13}-\frac{53\!\cdots\!17}{15\!\cdots\!91}a^{12}-\frac{13\!\cdots\!08}{15\!\cdots\!91}a^{11}+\frac{26\!\cdots\!49}{15\!\cdots\!91}a^{10}+\frac{51\!\cdots\!80}{15\!\cdots\!91}a^{9}-\frac{43\!\cdots\!79}{15\!\cdots\!91}a^{8}+\frac{23\!\cdots\!41}{15\!\cdots\!91}a^{7}+\frac{24\!\cdots\!41}{15\!\cdots\!91}a^{6}-\frac{28\!\cdots\!68}{15\!\cdots\!91}a^{5}+\frac{12\!\cdots\!75}{15\!\cdots\!91}a^{4}+\frac{89\!\cdots\!40}{15\!\cdots\!91}a^{3}-\frac{37\!\cdots\!76}{15\!\cdots\!91}a^{2}+\frac{19\!\cdots\!45}{15\!\cdots\!91}a+\frac{84\!\cdots\!94}{15\!\cdots\!91}$, $\frac{20\!\cdots\!01}{15\!\cdots\!91}a^{24}+\frac{85\!\cdots\!47}{15\!\cdots\!91}a^{23}-\frac{14\!\cdots\!96}{15\!\cdots\!91}a^{22}+\frac{11\!\cdots\!73}{15\!\cdots\!91}a^{21}+\frac{42\!\cdots\!52}{15\!\cdots\!91}a^{20}-\frac{29\!\cdots\!45}{58\!\cdots\!39}a^{19}-\frac{59\!\cdots\!17}{15\!\cdots\!91}a^{18}+\frac{18\!\cdots\!95}{15\!\cdots\!91}a^{17}+\frac{90\!\cdots\!64}{37\!\cdots\!71}a^{16}-\frac{19\!\cdots\!99}{15\!\cdots\!91}a^{15}-\frac{21\!\cdots\!96}{15\!\cdots\!91}a^{14}+\frac{10\!\cdots\!69}{15\!\cdots\!91}a^{13}-\frac{98\!\cdots\!65}{15\!\cdots\!91}a^{12}-\frac{23\!\cdots\!00}{15\!\cdots\!91}a^{11}+\frac{46\!\cdots\!46}{15\!\cdots\!91}a^{10}+\frac{68\!\cdots\!62}{15\!\cdots\!91}a^{9}-\frac{76\!\cdots\!62}{15\!\cdots\!91}a^{8}+\frac{42\!\cdots\!74}{15\!\cdots\!91}a^{7}+\frac{42\!\cdots\!28}{15\!\cdots\!91}a^{6}-\frac{50\!\cdots\!86}{15\!\cdots\!91}a^{5}+\frac{27\!\cdots\!12}{15\!\cdots\!91}a^{4}+\frac{15\!\cdots\!34}{15\!\cdots\!91}a^{3}-\frac{66\!\cdots\!14}{15\!\cdots\!91}a^{2}+\frac{36\!\cdots\!09}{15\!\cdots\!91}a+\frac{15\!\cdots\!56}{15\!\cdots\!91}$, $\frac{57\!\cdots\!66}{15\!\cdots\!91}a^{24}+\frac{10\!\cdots\!90}{15\!\cdots\!91}a^{23}-\frac{78\!\cdots\!93}{31\!\cdots\!82}a^{22}-\frac{17\!\cdots\!72}{15\!\cdots\!91}a^{21}+\frac{11\!\cdots\!59}{15\!\cdots\!91}a^{20}-\frac{29\!\cdots\!07}{58\!\cdots\!39}a^{19}-\frac{34\!\cdots\!55}{31\!\cdots\!82}a^{18}+\frac{57\!\cdots\!83}{31\!\cdots\!82}a^{17}+\frac{62\!\cdots\!37}{74\!\cdots\!42}a^{16}-\frac{35\!\cdots\!63}{15\!\cdots\!91}a^{15}-\frac{80\!\cdots\!93}{31\!\cdots\!82}a^{14}+\frac{21\!\cdots\!76}{15\!\cdots\!91}a^{13}-\frac{54\!\cdots\!98}{15\!\cdots\!91}a^{12}-\frac{57\!\cdots\!82}{15\!\cdots\!91}a^{11}+\frac{62\!\cdots\!25}{15\!\cdots\!91}a^{10}+\frac{10\!\cdots\!97}{31\!\cdots\!82}a^{9}-\frac{12\!\cdots\!45}{15\!\cdots\!91}a^{8}+\frac{45\!\cdots\!67}{31\!\cdots\!82}a^{7}+\frac{17\!\cdots\!19}{31\!\cdots\!82}a^{6}-\frac{11\!\cdots\!23}{31\!\cdots\!82}a^{5}-\frac{96\!\cdots\!05}{15\!\cdots\!91}a^{4}+\frac{21\!\cdots\!68}{15\!\cdots\!91}a^{3}-\frac{67\!\cdots\!09}{15\!\cdots\!91}a^{2}+\frac{35\!\cdots\!03}{31\!\cdots\!82}a+\frac{14\!\cdots\!16}{15\!\cdots\!91}$, $\frac{92\!\cdots\!17}{31\!\cdots\!82}a^{24}+\frac{59\!\cdots\!55}{31\!\cdots\!82}a^{23}-\frac{32\!\cdots\!64}{15\!\cdots\!91}a^{22}+\frac{41\!\cdots\!51}{31\!\cdots\!82}a^{21}+\frac{19\!\cdots\!03}{31\!\cdots\!82}a^{20}-\frac{61\!\cdots\!62}{58\!\cdots\!39}a^{19}-\frac{13\!\cdots\!44}{15\!\cdots\!91}a^{18}+\frac{38\!\cdots\!04}{15\!\cdots\!91}a^{17}+\frac{21\!\cdots\!10}{37\!\cdots\!71}a^{16}-\frac{41\!\cdots\!52}{15\!\cdots\!91}a^{15}-\frac{91\!\cdots\!36}{15\!\cdots\!91}a^{14}+\frac{44\!\cdots\!93}{31\!\cdots\!82}a^{13}-\frac{19\!\cdots\!22}{15\!\cdots\!91}a^{12}-\frac{10\!\cdots\!01}{31\!\cdots\!82}a^{11}+\frac{19\!\cdots\!59}{31\!\cdots\!82}a^{10}+\frac{39\!\cdots\!39}{31\!\cdots\!82}a^{9}-\frac{32\!\cdots\!21}{31\!\cdots\!82}a^{8}+\frac{85\!\cdots\!00}{15\!\cdots\!91}a^{7}+\frac{93\!\cdots\!25}{15\!\cdots\!91}a^{6}-\frac{21\!\cdots\!49}{31\!\cdots\!82}a^{5}+\frac{88\!\cdots\!05}{31\!\cdots\!82}a^{4}+\frac{67\!\cdots\!21}{31\!\cdots\!82}a^{3}-\frac{27\!\cdots\!37}{31\!\cdots\!82}a^{2}+\frac{73\!\cdots\!51}{15\!\cdots\!91}a+\frac{63\!\cdots\!17}{31\!\cdots\!82}$, $\frac{48\!\cdots\!37}{15\!\cdots\!91}a^{24}+\frac{69\!\cdots\!61}{31\!\cdots\!82}a^{23}-\frac{69\!\cdots\!17}{31\!\cdots\!82}a^{22}+\frac{19\!\cdots\!94}{15\!\cdots\!91}a^{21}+\frac{10\!\cdots\!59}{15\!\cdots\!91}a^{20}-\frac{12\!\cdots\!29}{11\!\cdots\!78}a^{19}-\frac{14\!\cdots\!34}{15\!\cdots\!91}a^{18}+\frac{39\!\cdots\!31}{15\!\cdots\!91}a^{17}+\frac{45\!\cdots\!07}{74\!\cdots\!42}a^{16}-\frac{86\!\cdots\!83}{31\!\cdots\!82}a^{15}-\frac{21\!\cdots\!77}{31\!\cdots\!82}a^{14}+\frac{23\!\cdots\!49}{15\!\cdots\!91}a^{13}-\frac{19\!\cdots\!81}{15\!\cdots\!91}a^{12}-\frac{54\!\cdots\!31}{15\!\cdots\!91}a^{11}+\frac{20\!\cdots\!87}{31\!\cdots\!82}a^{10}+\frac{43\!\cdots\!21}{31\!\cdots\!82}a^{9}-\frac{33\!\cdots\!45}{31\!\cdots\!82}a^{8}+\frac{86\!\cdots\!77}{15\!\cdots\!91}a^{7}+\frac{96\!\cdots\!03}{15\!\cdots\!91}a^{6}-\frac{21\!\cdots\!51}{31\!\cdots\!82}a^{5}+\frac{39\!\cdots\!58}{15\!\cdots\!91}a^{4}+\frac{34\!\cdots\!78}{15\!\cdots\!91}a^{3}-\frac{28\!\cdots\!89}{31\!\cdots\!82}a^{2}+\frac{14\!\cdots\!81}{31\!\cdots\!82}a+\frac{32\!\cdots\!68}{15\!\cdots\!91}$, $\frac{42\!\cdots\!65}{31\!\cdots\!82}a^{24}+\frac{21\!\cdots\!59}{31\!\cdots\!82}a^{23}-\frac{15\!\cdots\!14}{15\!\cdots\!91}a^{22}+\frac{22\!\cdots\!55}{31\!\cdots\!82}a^{21}+\frac{43\!\cdots\!14}{15\!\cdots\!91}a^{20}-\frac{59\!\cdots\!69}{11\!\cdots\!78}a^{19}-\frac{12\!\cdots\!01}{31\!\cdots\!82}a^{18}+\frac{36\!\cdots\!97}{31\!\cdots\!82}a^{17}+\frac{96\!\cdots\!49}{37\!\cdots\!71}a^{16}-\frac{39\!\cdots\!65}{31\!\cdots\!82}a^{15}-\frac{31\!\cdots\!42}{15\!\cdots\!91}a^{14}+\frac{20\!\cdots\!19}{31\!\cdots\!82}a^{13}-\frac{19\!\cdots\!37}{31\!\cdots\!82}a^{12}-\frac{24\!\cdots\!62}{15\!\cdots\!91}a^{11}+\frac{46\!\cdots\!55}{15\!\cdots\!91}a^{10}+\frac{81\!\cdots\!89}{15\!\cdots\!91}a^{9}-\frac{77\!\cdots\!40}{15\!\cdots\!91}a^{8}+\frac{41\!\cdots\!17}{15\!\cdots\!91}a^{7}+\frac{43\!\cdots\!19}{15\!\cdots\!91}a^{6}-\frac{50\!\cdots\!18}{15\!\cdots\!91}a^{5}+\frac{47\!\cdots\!47}{31\!\cdots\!82}a^{4}+\frac{16\!\cdots\!65}{15\!\cdots\!91}a^{3}-\frac{66\!\cdots\!14}{15\!\cdots\!91}a^{2}+\frac{70\!\cdots\!17}{31\!\cdots\!82}a+\frac{15\!\cdots\!55}{15\!\cdots\!91}$, $\frac{46\!\cdots\!35}{31\!\cdots\!82}a^{24}+\frac{40\!\cdots\!61}{31\!\cdots\!82}a^{23}-\frac{33\!\cdots\!95}{31\!\cdots\!82}a^{22}+\frac{14\!\cdots\!89}{31\!\cdots\!82}a^{21}+\frac{47\!\cdots\!41}{15\!\cdots\!91}a^{20}-\frac{54\!\cdots\!69}{11\!\cdots\!78}a^{19}-\frac{69\!\cdots\!35}{15\!\cdots\!91}a^{18}+\frac{17\!\cdots\!99}{15\!\cdots\!91}a^{17}+\frac{22\!\cdots\!47}{74\!\cdots\!42}a^{16}-\frac{39\!\cdots\!35}{31\!\cdots\!82}a^{15}-\frac{13\!\cdots\!77}{31\!\cdots\!82}a^{14}+\frac{21\!\cdots\!19}{31\!\cdots\!82}a^{13}-\frac{17\!\cdots\!29}{31\!\cdots\!82}a^{12}-\frac{25\!\cdots\!78}{15\!\cdots\!91}a^{11}+\frac{45\!\cdots\!69}{15\!\cdots\!91}a^{10}+\frac{24\!\cdots\!17}{31\!\cdots\!82}a^{9}-\frac{76\!\cdots\!18}{15\!\cdots\!91}a^{8}+\frac{73\!\cdots\!13}{31\!\cdots\!82}a^{7}+\frac{89\!\cdots\!23}{31\!\cdots\!82}a^{6}-\frac{95\!\cdots\!15}{31\!\cdots\!82}a^{5}+\frac{22\!\cdots\!87}{31\!\cdots\!82}a^{4}+\frac{15\!\cdots\!36}{15\!\cdots\!91}a^{3}-\frac{62\!\cdots\!49}{15\!\cdots\!91}a^{2}+\frac{31\!\cdots\!02}{15\!\cdots\!91}a+\frac{14\!\cdots\!02}{15\!\cdots\!91}$, $\frac{26\!\cdots\!93}{15\!\cdots\!91}a^{24}+\frac{22\!\cdots\!21}{15\!\cdots\!91}a^{23}-\frac{18\!\cdots\!28}{15\!\cdots\!91}a^{22}+\frac{80\!\cdots\!09}{15\!\cdots\!91}a^{21}+\frac{10\!\cdots\!67}{31\!\cdots\!82}a^{20}-\frac{61\!\cdots\!75}{11\!\cdots\!78}a^{19}-\frac{15\!\cdots\!47}{31\!\cdots\!82}a^{18}+\frac{40\!\cdots\!65}{31\!\cdots\!82}a^{17}+\frac{12\!\cdots\!12}{37\!\cdots\!71}a^{16}-\frac{44\!\cdots\!79}{31\!\cdots\!82}a^{15}-\frac{76\!\cdots\!93}{15\!\cdots\!91}a^{14}+\frac{12\!\cdots\!62}{15\!\cdots\!91}a^{13}-\frac{19\!\cdots\!95}{31\!\cdots\!82}a^{12}-\frac{57\!\cdots\!85}{31\!\cdots\!82}a^{11}+\frac{10\!\cdots\!23}{31\!\cdots\!82}a^{10}+\frac{27\!\cdots\!67}{31\!\cdots\!82}a^{9}-\frac{17\!\cdots\!27}{31\!\cdots\!82}a^{8}+\frac{41\!\cdots\!17}{15\!\cdots\!91}a^{7}+\frac{50\!\cdots\!59}{15\!\cdots\!91}a^{6}-\frac{10\!\cdots\!47}{31\!\cdots\!82}a^{5}+\frac{12\!\cdots\!46}{15\!\cdots\!91}a^{4}+\frac{34\!\cdots\!69}{31\!\cdots\!82}a^{3}-\frac{13\!\cdots\!79}{31\!\cdots\!82}a^{2}+\frac{70\!\cdots\!49}{31\!\cdots\!82}a+\frac{31\!\cdots\!21}{31\!\cdots\!82}$, $\frac{10\!\cdots\!06}{15\!\cdots\!91}a^{24}+\frac{47\!\cdots\!11}{31\!\cdots\!82}a^{23}-\frac{15\!\cdots\!17}{31\!\cdots\!82}a^{22}+\frac{77\!\cdots\!51}{15\!\cdots\!91}a^{21}+\frac{44\!\cdots\!01}{31\!\cdots\!82}a^{20}-\frac{17\!\cdots\!71}{58\!\cdots\!39}a^{19}-\frac{63\!\cdots\!03}{31\!\cdots\!82}a^{18}+\frac{20\!\cdots\!85}{31\!\cdots\!82}a^{17}+\frac{93\!\cdots\!49}{74\!\cdots\!42}a^{16}-\frac{10\!\cdots\!01}{15\!\cdots\!91}a^{15}-\frac{31\!\cdots\!35}{31\!\cdots\!82}a^{14}+\frac{56\!\cdots\!71}{15\!\cdots\!91}a^{13}-\frac{11\!\cdots\!07}{31\!\cdots\!82}a^{12}-\frac{25\!\cdots\!87}{31\!\cdots\!82}a^{11}+\frac{26\!\cdots\!79}{15\!\cdots\!91}a^{10}+\frac{26\!\cdots\!47}{15\!\cdots\!91}a^{9}-\frac{43\!\cdots\!41}{15\!\cdots\!91}a^{8}+\frac{25\!\cdots\!04}{15\!\cdots\!91}a^{7}+\frac{23\!\cdots\!14}{15\!\cdots\!91}a^{6}-\frac{29\!\cdots\!55}{15\!\cdots\!91}a^{5}+\frac{19\!\cdots\!16}{15\!\cdots\!91}a^{4}+\frac{18\!\cdots\!33}{31\!\cdots\!82}a^{3}-\frac{38\!\cdots\!54}{15\!\cdots\!91}a^{2}+\frac{21\!\cdots\!32}{15\!\cdots\!91}a+\frac{17\!\cdots\!83}{31\!\cdots\!82}$, $\frac{12\!\cdots\!39}{31\!\cdots\!82}a^{24}+\frac{87\!\cdots\!35}{31\!\cdots\!82}a^{23}-\frac{90\!\cdots\!65}{31\!\cdots\!82}a^{22}+\frac{53\!\cdots\!65}{31\!\cdots\!82}a^{21}+\frac{26\!\cdots\!57}{31\!\cdots\!82}a^{20}-\frac{81\!\cdots\!50}{58\!\cdots\!39}a^{19}-\frac{37\!\cdots\!91}{31\!\cdots\!82}a^{18}+\frac{10\!\cdots\!49}{31\!\cdots\!82}a^{17}+\frac{59\!\cdots\!19}{74\!\cdots\!42}a^{16}-\frac{56\!\cdots\!85}{15\!\cdots\!91}a^{15}-\frac{27\!\cdots\!71}{31\!\cdots\!82}a^{14}+\frac{60\!\cdots\!45}{31\!\cdots\!82}a^{13}-\frac{26\!\cdots\!98}{15\!\cdots\!91}a^{12}-\frac{14\!\cdots\!39}{31\!\cdots\!82}a^{11}+\frac{26\!\cdots\!91}{31\!\cdots\!82}a^{10}+\frac{28\!\cdots\!15}{15\!\cdots\!91}a^{9}-\frac{44\!\cdots\!47}{31\!\cdots\!82}a^{8}+\frac{22\!\cdots\!83}{31\!\cdots\!82}a^{7}+\frac{25\!\cdots\!69}{31\!\cdots\!82}a^{6}-\frac{14\!\cdots\!19}{15\!\cdots\!91}a^{5}+\frac{10\!\cdots\!37}{31\!\cdots\!82}a^{4}+\frac{90\!\cdots\!79}{31\!\cdots\!82}a^{3}-\frac{37\!\cdots\!79}{31\!\cdots\!82}a^{2}+\frac{19\!\cdots\!77}{31\!\cdots\!82}a+\frac{84\!\cdots\!99}{31\!\cdots\!82}$, $\frac{31\!\cdots\!25}{15\!\cdots\!91}a^{24}+\frac{34\!\cdots\!97}{31\!\cdots\!82}a^{23}-\frac{22\!\cdots\!61}{15\!\cdots\!91}a^{22}+\frac{16\!\cdots\!63}{15\!\cdots\!91}a^{21}+\frac{13\!\cdots\!63}{31\!\cdots\!82}a^{20}-\frac{43\!\cdots\!13}{58\!\cdots\!39}a^{19}-\frac{94\!\cdots\!37}{15\!\cdots\!91}a^{18}+\frac{27\!\cdots\!76}{15\!\cdots\!91}a^{17}+\frac{14\!\cdots\!60}{37\!\cdots\!71}a^{16}-\frac{29\!\cdots\!30}{15\!\cdots\!91}a^{15}-\frac{51\!\cdots\!52}{15\!\cdots\!91}a^{14}+\frac{15\!\cdots\!66}{15\!\cdots\!91}a^{13}-\frac{28\!\cdots\!57}{31\!\cdots\!82}a^{12}-\frac{72\!\cdots\!37}{31\!\cdots\!82}a^{11}+\frac{69\!\cdots\!16}{15\!\cdots\!91}a^{10}+\frac{25\!\cdots\!47}{31\!\cdots\!82}a^{9}-\frac{11\!\cdots\!63}{15\!\cdots\!91}a^{8}+\frac{12\!\cdots\!49}{31\!\cdots\!82}a^{7}+\frac{13\!\cdots\!13}{31\!\cdots\!82}a^{6}-\frac{14\!\cdots\!67}{31\!\cdots\!82}a^{5}+\frac{34\!\cdots\!09}{15\!\cdots\!91}a^{4}+\frac{47\!\cdots\!49}{31\!\cdots\!82}a^{3}-\frac{98\!\cdots\!34}{15\!\cdots\!91}a^{2}+\frac{10\!\cdots\!79}{31\!\cdots\!82}a+\frac{45\!\cdots\!69}{31\!\cdots\!82}$, $\frac{18\!\cdots\!59}{15\!\cdots\!91}a^{24}+\frac{86\!\cdots\!77}{15\!\cdots\!91}a^{23}-\frac{11\!\cdots\!10}{15\!\cdots\!91}a^{22}-\frac{41\!\cdots\!96}{15\!\cdots\!91}a^{21}+\frac{31\!\cdots\!61}{15\!\cdots\!91}a^{20}+\frac{28\!\cdots\!44}{58\!\cdots\!39}a^{19}-\frac{53\!\cdots\!24}{15\!\cdots\!91}a^{18}-\frac{65\!\cdots\!13}{15\!\cdots\!91}a^{17}+\frac{13\!\cdots\!75}{37\!\cdots\!71}a^{16}+\frac{17\!\cdots\!21}{15\!\cdots\!91}a^{15}-\frac{34\!\cdots\!52}{15\!\cdots\!91}a^{14}+\frac{12\!\cdots\!96}{15\!\cdots\!91}a^{13}+\frac{13\!\cdots\!88}{15\!\cdots\!91}a^{12}-\frac{11\!\cdots\!51}{15\!\cdots\!91}a^{11}-\frac{26\!\cdots\!85}{15\!\cdots\!91}a^{10}+\frac{37\!\cdots\!19}{15\!\cdots\!91}a^{9}+\frac{23\!\cdots\!37}{15\!\cdots\!91}a^{8}-\frac{55\!\cdots\!72}{15\!\cdots\!91}a^{7}+\frac{79\!\cdots\!05}{15\!\cdots\!91}a^{6}+\frac{37\!\cdots\!66}{15\!\cdots\!91}a^{5}-\frac{13\!\cdots\!94}{15\!\cdots\!91}a^{4}-\frac{86\!\cdots\!71}{15\!\cdots\!91}a^{3}+\frac{55\!\cdots\!11}{15\!\cdots\!91}a^{2}-\frac{44\!\cdots\!20}{15\!\cdots\!91}a-\frac{13\!\cdots\!10}{15\!\cdots\!91}$, $a-2$, $\frac{15\!\cdots\!81}{31\!\cdots\!82}a^{24}+\frac{59\!\cdots\!35}{15\!\cdots\!91}a^{23}-\frac{55\!\cdots\!00}{15\!\cdots\!91}a^{22}+\frac{57\!\cdots\!65}{31\!\cdots\!82}a^{21}+\frac{32\!\cdots\!41}{31\!\cdots\!82}a^{20}-\frac{19\!\cdots\!33}{11\!\cdots\!78}a^{19}-\frac{46\!\cdots\!37}{31\!\cdots\!82}a^{18}+\frac{12\!\cdots\!29}{31\!\cdots\!82}a^{17}+\frac{36\!\cdots\!52}{37\!\cdots\!71}a^{16}-\frac{13\!\cdots\!29}{31\!\cdots\!82}a^{15}-\frac{19\!\cdots\!07}{15\!\cdots\!91}a^{14}+\frac{73\!\cdots\!99}{31\!\cdots\!82}a^{13}-\frac{31\!\cdots\!00}{15\!\cdots\!91}a^{12}-\frac{17\!\cdots\!83}{31\!\cdots\!82}a^{11}+\frac{15\!\cdots\!59}{15\!\cdots\!91}a^{10}+\frac{71\!\cdots\!47}{31\!\cdots\!82}a^{9}-\frac{26\!\cdots\!16}{15\!\cdots\!91}a^{8}+\frac{26\!\cdots\!41}{31\!\cdots\!82}a^{7}+\frac{30\!\cdots\!43}{31\!\cdots\!82}a^{6}-\frac{33\!\cdots\!53}{31\!\cdots\!82}a^{5}+\frac{12\!\cdots\!13}{31\!\cdots\!82}a^{4}+\frac{10\!\cdots\!47}{31\!\cdots\!82}a^{3}-\frac{22\!\cdots\!80}{15\!\cdots\!91}a^{2}+\frac{11\!\cdots\!78}{15\!\cdots\!91}a+\frac{10\!\cdots\!57}{31\!\cdots\!82}$, $\frac{75\!\cdots\!11}{15\!\cdots\!91}a^{24}+\frac{49\!\cdots\!34}{15\!\cdots\!91}a^{23}-\frac{10\!\cdots\!29}{31\!\cdots\!82}a^{22}+\frac{66\!\cdots\!49}{31\!\cdots\!82}a^{21}+\frac{31\!\cdots\!83}{31\!\cdots\!82}a^{20}-\frac{19\!\cdots\!11}{11\!\cdots\!78}a^{19}-\frac{22\!\cdots\!88}{15\!\cdots\!91}a^{18}+\frac{12\!\cdots\!97}{31\!\cdots\!82}a^{17}+\frac{35\!\cdots\!08}{37\!\cdots\!71}a^{16}-\frac{67\!\cdots\!74}{15\!\cdots\!91}a^{15}-\frac{30\!\cdots\!97}{31\!\cdots\!82}a^{14}+\frac{72\!\cdots\!45}{31\!\cdots\!82}a^{13}-\frac{63\!\cdots\!61}{31\!\cdots\!82}a^{12}-\frac{16\!\cdots\!91}{31\!\cdots\!82}a^{11}+\frac{31\!\cdots\!85}{31\!\cdots\!82}a^{10}+\frac{32\!\cdots\!86}{15\!\cdots\!91}a^{9}-\frac{26\!\cdots\!86}{15\!\cdots\!91}a^{8}+\frac{27\!\cdots\!73}{31\!\cdots\!82}a^{7}+\frac{15\!\cdots\!44}{15\!\cdots\!91}a^{6}-\frac{33\!\cdots\!85}{31\!\cdots\!82}a^{5}+\frac{13\!\cdots\!59}{31\!\cdots\!82}a^{4}+\frac{10\!\cdots\!49}{31\!\cdots\!82}a^{3}-\frac{44\!\cdots\!75}{31\!\cdots\!82}a^{2}+\frac{11\!\cdots\!43}{15\!\cdots\!91}a+\frac{50\!\cdots\!09}{15\!\cdots\!91}$, $\frac{16\!\cdots\!04}{15\!\cdots\!91}a^{24}+\frac{19\!\cdots\!45}{31\!\cdots\!82}a^{23}-\frac{11\!\cdots\!40}{15\!\cdots\!91}a^{22}+\frac{82\!\cdots\!49}{15\!\cdots\!91}a^{21}+\frac{69\!\cdots\!77}{31\!\cdots\!82}a^{20}-\frac{22\!\cdots\!71}{58\!\cdots\!39}a^{19}-\frac{49\!\cdots\!47}{15\!\cdots\!91}a^{18}+\frac{14\!\cdots\!41}{15\!\cdots\!91}a^{17}+\frac{76\!\cdots\!79}{37\!\cdots\!71}a^{16}-\frac{15\!\cdots\!25}{15\!\cdots\!91}a^{15}-\frac{27\!\cdots\!21}{15\!\cdots\!91}a^{14}+\frac{81\!\cdots\!02}{15\!\cdots\!91}a^{13}-\frac{14\!\cdots\!03}{31\!\cdots\!82}a^{12}-\frac{37\!\cdots\!91}{31\!\cdots\!82}a^{11}+\frac{36\!\cdots\!65}{15\!\cdots\!91}a^{10}+\frac{13\!\cdots\!65}{31\!\cdots\!82}a^{9}-\frac{60\!\cdots\!77}{15\!\cdots\!91}a^{8}+\frac{64\!\cdots\!93}{31\!\cdots\!82}a^{7}+\frac{68\!\cdots\!99}{31\!\cdots\!82}a^{6}-\frac{78\!\cdots\!53}{31\!\cdots\!82}a^{5}+\frac{17\!\cdots\!05}{15\!\cdots\!91}a^{4}+\frac{24\!\cdots\!97}{31\!\cdots\!82}a^{3}-\frac{51\!\cdots\!27}{15\!\cdots\!91}a^{2}+\frac{55\!\cdots\!47}{31\!\cdots\!82}a+\frac{23\!\cdots\!69}{31\!\cdots\!82}$, $\frac{59\!\cdots\!41}{31\!\cdots\!82}a^{24}+\frac{52\!\cdots\!51}{31\!\cdots\!82}a^{23}-\frac{41\!\cdots\!39}{31\!\cdots\!82}a^{22}+\frac{86\!\cdots\!49}{15\!\cdots\!91}a^{21}+\frac{60\!\cdots\!99}{15\!\cdots\!91}a^{20}-\frac{68\!\cdots\!97}{11\!\cdots\!78}a^{19}-\frac{87\!\cdots\!50}{15\!\cdots\!91}a^{18}+\frac{45\!\cdots\!89}{31\!\cdots\!82}a^{17}+\frac{14\!\cdots\!11}{37\!\cdots\!71}a^{16}-\frac{24\!\cdots\!92}{15\!\cdots\!91}a^{15}-\frac{17\!\cdots\!71}{31\!\cdots\!82}a^{14}+\frac{13\!\cdots\!45}{15\!\cdots\!91}a^{13}-\frac{21\!\cdots\!03}{31\!\cdots\!82}a^{12}-\frac{32\!\cdots\!20}{15\!\cdots\!91}a^{11}+\frac{56\!\cdots\!30}{15\!\cdots\!91}a^{10}+\frac{30\!\cdots\!67}{31\!\cdots\!82}a^{9}-\frac{19\!\cdots\!91}{31\!\cdots\!82}a^{8}+\frac{93\!\cdots\!09}{31\!\cdots\!82}a^{7}+\frac{56\!\cdots\!96}{15\!\cdots\!91}a^{6}-\frac{60\!\cdots\!08}{15\!\cdots\!91}a^{5}+\frac{14\!\cdots\!25}{15\!\cdots\!91}a^{4}+\frac{19\!\cdots\!12}{15\!\cdots\!91}a^{3}-\frac{78\!\cdots\!26}{15\!\cdots\!91}a^{2}+\frac{40\!\cdots\!09}{15\!\cdots\!91}a+\frac{35\!\cdots\!81}{31\!\cdots\!82}$, $\frac{83\!\cdots\!87}{15\!\cdots\!91}a^{24}+\frac{46\!\cdots\!72}{15\!\cdots\!91}a^{23}-\frac{59\!\cdots\!94}{15\!\cdots\!91}a^{22}+\frac{41\!\cdots\!83}{15\!\cdots\!91}a^{21}+\frac{17\!\cdots\!12}{15\!\cdots\!91}a^{20}-\frac{11\!\cdots\!15}{58\!\cdots\!39}a^{19}-\frac{24\!\cdots\!24}{15\!\cdots\!91}a^{18}+\frac{71\!\cdots\!89}{15\!\cdots\!91}a^{17}+\frac{38\!\cdots\!46}{37\!\cdots\!71}a^{16}-\frac{76\!\cdots\!89}{15\!\cdots\!91}a^{15}-\frac{13\!\cdots\!39}{15\!\cdots\!91}a^{14}+\frac{40\!\cdots\!70}{15\!\cdots\!91}a^{13}-\frac{37\!\cdots\!39}{15\!\cdots\!91}a^{12}-\frac{94\!\cdots\!90}{15\!\cdots\!91}a^{11}+\frac{18\!\cdots\!73}{15\!\cdots\!91}a^{10}+\frac{32\!\cdots\!76}{15\!\cdots\!91}a^{9}-\frac{30\!\cdots\!14}{15\!\cdots\!91}a^{8}+\frac{16\!\cdots\!76}{15\!\cdots\!91}a^{7}+\frac{17\!\cdots\!00}{15\!\cdots\!91}a^{6}-\frac{19\!\cdots\!51}{15\!\cdots\!91}a^{5}+\frac{94\!\cdots\!73}{15\!\cdots\!91}a^{4}+\frac{62\!\cdots\!38}{15\!\cdots\!91}a^{3}-\frac{25\!\cdots\!32}{15\!\cdots\!91}a^{2}+\frac{13\!\cdots\!34}{15\!\cdots\!91}a+\frac{59\!\cdots\!37}{15\!\cdots\!91}$, $\frac{65\!\cdots\!93}{15\!\cdots\!91}a^{24}+\frac{88\!\cdots\!83}{31\!\cdots\!82}a^{23}-\frac{46\!\cdots\!95}{15\!\cdots\!91}a^{22}+\frac{55\!\cdots\!41}{31\!\cdots\!82}a^{21}+\frac{27\!\cdots\!71}{31\!\cdots\!82}a^{20}-\frac{85\!\cdots\!14}{58\!\cdots\!39}a^{19}-\frac{19\!\cdots\!61}{15\!\cdots\!91}a^{18}+\frac{10\!\cdots\!89}{31\!\cdots\!82}a^{17}+\frac{60\!\cdots\!05}{74\!\cdots\!42}a^{16}-\frac{11\!\cdots\!71}{31\!\cdots\!82}a^{15}-\frac{13\!\cdots\!93}{15\!\cdots\!91}a^{14}+\frac{62\!\cdots\!51}{31\!\cdots\!82}a^{13}-\frac{55\!\cdots\!41}{31\!\cdots\!82}a^{12}-\frac{14\!\cdots\!01}{31\!\cdots\!82}a^{11}+\frac{13\!\cdots\!80}{15\!\cdots\!91}a^{10}+\frac{55\!\cdots\!43}{31\!\cdots\!82}a^{9}-\frac{45\!\cdots\!91}{31\!\cdots\!82}a^{8}+\frac{24\!\cdots\!99}{31\!\cdots\!82}a^{7}+\frac{13\!\cdots\!84}{15\!\cdots\!91}a^{6}-\frac{14\!\cdots\!79}{15\!\cdots\!91}a^{5}+\frac{12\!\cdots\!59}{31\!\cdots\!82}a^{4}+\frac{94\!\cdots\!15}{31\!\cdots\!82}a^{3}-\frac{19\!\cdots\!42}{15\!\cdots\!91}a^{2}+\frac{21\!\cdots\!97}{31\!\cdots\!82}a+\frac{44\!\cdots\!03}{15\!\cdots\!91}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1066553081453288300 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{25}\cdot(2\pi)^{0}\cdot 1066553081453288300 \cdot 1}{2\cdot\sqrt{19744527036368077698033828496963106435582783749713601}}\cr\approx \mathstrut & 0.127344151259425 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^25 - x^24 - 72*x^23 + 161*x^22 + 1991*x^21 - 6935*x^20 - 23789*x^19 + 131523*x^18 + 59219*x^17 - 1219472*x^16 + 1274267*x^15 + 5134575*x^14 - 12138942*x^13 - 4263646*x^12 + 39567816*x^11 - 30337248*x^10 - 42180110*x^9 + 75903945*x^8 - 9872226*x^7 - 55689151*x^6 + 38006340*x^5 + 5737119*x^4 - 14814116*x^3 + 5029783*x^2 - 190198*x - 111103)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^25 - x^24 - 72*x^23 + 161*x^22 + 1991*x^21 - 6935*x^20 - 23789*x^19 + 131523*x^18 + 59219*x^17 - 1219472*x^16 + 1274267*x^15 + 5134575*x^14 - 12138942*x^13 - 4263646*x^12 + 39567816*x^11 - 30337248*x^10 - 42180110*x^9 + 75903945*x^8 - 9872226*x^7 - 55689151*x^6 + 38006340*x^5 + 5737119*x^4 - 14814116*x^3 + 5029783*x^2 - 190198*x - 111103, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^25 - x^24 - 72*x^23 + 161*x^22 + 1991*x^21 - 6935*x^20 - 23789*x^19 + 131523*x^18 + 59219*x^17 - 1219472*x^16 + 1274267*x^15 + 5134575*x^14 - 12138942*x^13 - 4263646*x^12 + 39567816*x^11 - 30337248*x^10 - 42180110*x^9 + 75903945*x^8 - 9872226*x^7 - 55689151*x^6 + 38006340*x^5 + 5737119*x^4 - 14814116*x^3 + 5029783*x^2 - 190198*x - 111103);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 - x^24 - 72*x^23 + 161*x^22 + 1991*x^21 - 6935*x^20 - 23789*x^19 + 131523*x^18 + 59219*x^17 - 1219472*x^16 + 1274267*x^15 + 5134575*x^14 - 12138942*x^13 - 4263646*x^12 + 39567816*x^11 - 30337248*x^10 - 42180110*x^9 + 75903945*x^8 - 9872226*x^7 - 55689151*x^6 + 38006340*x^5 + 5737119*x^4 - 14814116*x^3 + 5029783*x^2 - 190198*x - 111103);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{25}$ (as 25T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 25
The 25 conjugacy class representatives for $C_{25}$
Character table for $C_{25}$

Intermediate fields

5.5.519885601.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.5.0.1}{5} }^{5}$ $25$ $25$ $25$ $25$ $25$ $25$ ${\href{/padicField/19.5.0.1}{5} }^{5}$ ${\href{/padicField/23.5.0.1}{5} }^{5}$ $25$ $25$ $25$ $25$ $25$ $25$ $25$ ${\href{/padicField/59.5.0.1}{5} }^{5}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(151\) Copy content Toggle raw display Deg $25$$25$$1$$24$