\\ Pari/GP code for working with number field 25.25.1269734648531914468903714880493455422104626762401.1 \\ (Note that not all these functions may be available, and some may take a long time to execute.) \\ Define the number field: K = bnfinit(x^25 - x^24 - 48*x^23 + 43*x^22 + 946*x^21 - 752*x^20 - 9993*x^19 + 6962*x^18 + 62052*x^17 - 37341*x^16 - 234195*x^15 + 119366*x^14 + 538390*x^13 - 226505*x^12 - 737819*x^11 + 249907*x^10 + 571793*x^9 - 151052*x^8 - 224456*x^7 + 42136*x^6 + 35494*x^5 - 2561*x^4 - 1633*x^3 + 57*x^2 + 19*x - 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: idealfactors = idealprimedec(K, p); \\ get the data vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])