Normalized defining polynomial
\(x^{25} - x^{24} - 48 x^{23} + 43 x^{22} + 946 x^{21} - 752 x^{20} - 9993 x^{19} + 6962 x^{18} + 62052 x^{17} - 37341 x^{16} - 234195 x^{15} + 119366 x^{14} + 538390 x^{13} - 226505 x^{12} - 737819 x^{11} + 249907 x^{10} + 571793 x^{9} - 151052 x^{8} - 224456 x^{7} + 42136 x^{6} + 35494 x^{5} - 2561 x^{4} - 1633 x^{3} + 57 x^{2} + 19 x - 1\)
Invariants
Degree: | $25$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[25, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(1269734648531914468903714880493455422104626762401\)\(\medspace = 101^{24}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $83.97$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $101$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $25$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(101\) | ||
Dirichlet character group: | $\lbrace$$\chi_{101}(1,·)$, $\chi_{101}(68,·)$, $\chi_{101}(5,·)$, $\chi_{101}(71,·)$, $\chi_{101}(78,·)$, $\chi_{101}(79,·)$, $\chi_{101}(16,·)$, $\chi_{101}(81,·)$, $\chi_{101}(19,·)$, $\chi_{101}(84,·)$, $\chi_{101}(87,·)$, $\chi_{101}(24,·)$, $\chi_{101}(25,·)$, $\chi_{101}(92,·)$, $\chi_{101}(31,·)$, $\chi_{101}(80,·)$, $\chi_{101}(36,·)$, $\chi_{101}(37,·)$, $\chi_{101}(97,·)$, $\chi_{101}(52,·)$, $\chi_{101}(54,·)$, $\chi_{101}(56,·)$, $\chi_{101}(88,·)$, $\chi_{101}(58,·)$, $\chi_{101}(95,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{809} a^{23} - \frac{315}{809} a^{22} + \frac{237}{809} a^{21} - \frac{290}{809} a^{20} + \frac{92}{809} a^{19} + \frac{157}{809} a^{18} + \frac{10}{809} a^{17} - \frac{88}{809} a^{16} - \frac{194}{809} a^{15} + \frac{162}{809} a^{14} + \frac{105}{809} a^{13} + \frac{333}{809} a^{12} - \frac{221}{809} a^{11} - \frac{126}{809} a^{10} - \frac{41}{809} a^{9} + \frac{366}{809} a^{8} + \frac{27}{809} a^{7} - \frac{136}{809} a^{6} - \frac{183}{809} a^{5} - \frac{129}{809} a^{4} + \frac{348}{809} a^{3} + \frac{100}{809} a^{2} - \frac{348}{809} a + \frac{133}{809}$, $\frac{1}{3924931990014460708094129751350317973059} a^{24} - \frac{312468728906810600397959776806806719}{3924931990014460708094129751350317973059} a^{23} + \frac{1539910052469863852062906239587702188335}{3924931990014460708094129751350317973059} a^{22} - \frac{1958814356801804597879029427540986313446}{3924931990014460708094129751350317973059} a^{21} + \frac{6377023749985007835794239821544685684}{13395672320868466580526040106997672263} a^{20} + \frac{324167581744813269420809625852756496767}{3924931990014460708094129751350317973059} a^{19} + \frac{459778914107668070929540000340987789687}{3924931990014460708094129751350317973059} a^{18} + \frac{929192756457990238355746804932501856458}{3924931990014460708094129751350317973059} a^{17} + \frac{192195572641135650378090775443484417260}{3924931990014460708094129751350317973059} a^{16} - \frac{1492141140751753791588026160190006035551}{3924931990014460708094129751350317973059} a^{15} + \frac{432474786473290779899323015529976275150}{3924931990014460708094129751350317973059} a^{14} + \frac{1909899722221996967526926974703720208687}{3924931990014460708094129751350317973059} a^{13} + \frac{1239237157944514323335423738684383391440}{3924931990014460708094129751350317973059} a^{12} + \frac{515716619115314781285187205986271725240}{3924931990014460708094129751350317973059} a^{11} - \frac{1325523699172288732854373410347205729350}{3924931990014460708094129751350317973059} a^{10} + \frac{681366914330040734466747029531644902698}{3924931990014460708094129751350317973059} a^{9} + \frac{380145157982285937088841752916872597394}{3924931990014460708094129751350317973059} a^{8} - \frac{1710236828687369467697485535676536493936}{3924931990014460708094129751350317973059} a^{7} - \frac{1583415115030320691262090557837009330215}{3924931990014460708094129751350317973059} a^{6} - \frac{1345069631769368109828031379540329089997}{3924931990014460708094129751350317973059} a^{5} - \frac{317066758514777751648368647709757773556}{3924931990014460708094129751350317973059} a^{4} + \frac{606081201141324543757269901260282925086}{3924931990014460708094129751350317973059} a^{3} + \frac{1561617130488087624579794765236937071340}{3924931990014460708094129751350317973059} a^{2} - \frac{1378953798207012513834470229548008415363}{3924931990014460708094129751350317973059} a + \frac{331233819462536232212091530392342656536}{3924931990014460708094129751350317973059}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $24$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 7091595602831931.0 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 25 |
The 25 conjugacy class representatives for $C_{25}$ |
Character table for $C_{25}$ is not computed |
Intermediate fields
5.5.104060401.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{5}$ | $25$ | $25$ | $25$ | $25$ | $25$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{5}$ | $25$ | $25$ | $25$ | $25$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
101 | Data not computed |