Normalized defining polynomial
\( x^{25} - 104 x^{23} - 76 x^{22} + 4358 x^{21} + 5884 x^{20} - 94439 x^{19} - 178142 x^{18} + 1136264 x^{17} + 2743554 x^{16} - 7517715 x^{15} - 23379160 x^{14} + 23943273 x^{13} + 111486276 x^{12} - 11753214 x^{11} - 284820250 x^{10} - 119774447 x^{9} + 352085268 x^{8} + 260565807 x^{7} - 179794682 x^{6} - 185477445 x^{5} + 22993680 x^{4} + 45549604 x^{3} + 1956424 x^{2} - 3466480 x - 359776 \)
Invariants
| Degree: | $25$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[25, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(121207875070942751916201424921290281964762434202234001=11^{20}\cdot 41^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $132.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(451=11\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{451}(256,·)$, $\chi_{451}(1,·)$, $\chi_{451}(324,·)$, $\chi_{451}(133,·)$, $\chi_{451}(262,·)$, $\chi_{451}(201,·)$, $\chi_{451}(119,·)$, $\chi_{451}(141,·)$, $\chi_{451}(78,·)$, $\chi_{451}(16,·)$, $\chi_{451}(344,·)$, $\chi_{451}(346,·)$, $\chi_{451}(411,·)$, $\chi_{451}(92,·)$, $\chi_{451}(221,·)$, $\chi_{451}(223,·)$, $\chi_{451}(379,·)$, $\chi_{451}(100,·)$, $\chi_{451}(37,·)$, $\chi_{451}(42,·)$, $\chi_{451}(174,·)$, $\chi_{451}(180,·)$, $\chi_{451}(247,·)$, $\chi_{451}(59,·)$, $\chi_{451}(124,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{15} + \frac{1}{6} a^{13} + \frac{1}{6} a^{11} - \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a^{3} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{6} a^{16} + \frac{1}{6} a^{14} + \frac{1}{6} a^{12} - \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{4} - \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{17} - \frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{18} - \frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{19} - \frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{18} a^{20} - \frac{1}{18} a^{19} + \frac{1}{18} a^{17} + \frac{1}{18} a^{16} - \frac{1}{6} a^{14} + \frac{1}{18} a^{13} - \frac{1}{6} a^{12} + \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{9} a^{9} - \frac{1}{2} a^{8} + \frac{1}{9} a^{7} - \frac{5}{18} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{6} a^{3} + \frac{7}{18} a^{2} - \frac{2}{9} a + \frac{4}{9}$, $\frac{1}{18} a^{21} - \frac{1}{18} a^{19} + \frac{1}{18} a^{18} - \frac{1}{18} a^{17} + \frac{1}{18} a^{16} - \frac{1}{9} a^{14} + \frac{1}{18} a^{13} + \frac{1}{6} a^{11} + \frac{5}{18} a^{10} - \frac{2}{9} a^{9} - \frac{7}{18} a^{8} - \frac{1}{3} a^{7} - \frac{1}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{9} a^{3} + \frac{7}{18} a - \frac{2}{9}$, $\frac{1}{36} a^{22} + \frac{1}{18} a^{18} + \frac{1}{18} a^{17} + \frac{1}{36} a^{16} - \frac{1}{18} a^{15} - \frac{1}{18} a^{14} - \frac{2}{9} a^{13} - \frac{1}{12} a^{12} + \frac{2}{9} a^{11} - \frac{13}{36} a^{10} + \frac{1}{9} a^{9} + \frac{1}{3} a^{8} + \frac{1}{36} a^{6} - \frac{1}{3} a^{5} - \frac{17}{36} a^{4} - \frac{1}{36} a^{2} - \frac{1}{18} a + \frac{2}{9}$, $\frac{1}{72} a^{23} + \frac{1}{36} a^{19} - \frac{1}{18} a^{18} + \frac{1}{72} a^{17} - \frac{1}{36} a^{16} + \frac{1}{18} a^{15} + \frac{5}{36} a^{14} - \frac{5}{24} a^{13} - \frac{1}{18} a^{12} - \frac{7}{72} a^{11} + \frac{7}{18} a^{10} - \frac{1}{12} a^{9} - \frac{1}{4} a^{8} - \frac{23}{72} a^{7} - \frac{1}{2} a^{6} - \frac{5}{72} a^{5} + \frac{1}{12} a^{4} - \frac{25}{72} a^{3} + \frac{7}{18} a^{2} - \frac{7}{18} a + \frac{1}{3}$, $\frac{1}{4645054387503589812323170137426705538267157804061555148142457105139645239887856} a^{24} - \frac{859354812071012804359247599724671235467937442517168449536891069045371596563}{193543932812649575513465422392779397427798241835898131172602379380818551661994} a^{23} - \frac{38786899632211496885306513181478292830273067623148411690420065419059898863}{580631798437948726540396267178338192283394725507694393517807138142455654985982} a^{22} + \frac{8239299915306429296353236419055810352423720443091081562964572327400042638725}{1161263596875897453080792534356676384566789451015388787035614276284911309971964} a^{21} - \frac{23272401210683355761005581399286899972833354990041047291977651520933493708205}{2322527193751794906161585068713352769133578902030777574071228552569822619943928} a^{20} - \frac{73599837319932613928157706101795369873948461861639190786435123182892411077129}{1161263596875897453080792534356676384566789451015388787035614276284911309971964} a^{19} - \frac{4980104221904733911841651523217650969703330680297179502047377466399423407167}{516117154167065534702574459714078393140795311562395016460273011682182804431984} a^{18} - \frac{107025797679644420639275043009777697393760638817064038471994886460438400840671}{2322527193751794906161585068713352769133578902030777574071228552569822619943928} a^{17} - \frac{16258394601701430459743692428989076937248209777438152244196964449837795467456}{290315899218974363270198133589169096141697362753847196758903569071227827492991} a^{16} - \frac{28117657008738771425342982226088734984092085007506327729172124410075292264493}{774175731250598302053861689571117589711192967343592524690409517523274206647976} a^{15} - \frac{368668965828531779600530650638127952384098655191870922053674145723752605744009}{1548351462501196604107723379142235179422385934687185049380819035046548413295952} a^{14} - \frac{52915124658312778934423549275170949044395014277274158125536062013432147069190}{290315899218974363270198133589169096141697362753847196758903569071227827492991} a^{13} - \frac{537147684229684405195775537708321543347120936510610641150122861195214564444447}{4645054387503589812323170137426705538267157804061555148142457105139645239887856} a^{12} - \frac{199341850082789679804712248472515790670097973606558846704715339473565393035265}{1161263596875897453080792534356676384566789451015388787035614276284911309971964} a^{11} + \frac{45766713965901180998989120774502146206079737073294096748981176519682512611803}{774175731250598302053861689571117589711192967343592524690409517523274206647976} a^{10} + \frac{304621019263311166427207743572007556900884305489814828186627954972449982812911}{2322527193751794906161585068713352769133578902030777574071228552569822619943928} a^{9} + \frac{537327502320482445025527774188445767899808232295105995384016757333230292089667}{1548351462501196604107723379142235179422385934687185049380819035046548413295952} a^{8} - \frac{29795000357785207119727538051429034591038014402785520569174860525750672193963}{129029288541766383675643614928519598285198827890598754115068252920545701107996} a^{7} - \frac{1509951389481125960324349845868878606180021405382501738666728166383324722324457}{4645054387503589812323170137426705538267157804061555148142457105139645239887856} a^{6} + \frac{268954024093274166791684224851886071730205812238386709068328546874707398384001}{774175731250598302053861689571117589711192967343592524690409517523274206647976} a^{5} - \frac{10817922464143947867116574530547239719398476895969820947299969294306620830365}{4645054387503589812323170137426705538267157804061555148142457105139645239887856} a^{4} + \frac{61783581881944563891428235586305199323643306982972702286848807440496039084051}{290315899218974363270198133589169096141697362753847196758903569071227827492991} a^{3} - \frac{142714134497341868478994537392419292828811986574662281096247692334856891600213}{387087865625299151026930844785558794855596483671796262345204758761637103323988} a^{2} + \frac{67057845983509539274634223519453637992560847437559610129393263537856130265113}{193543932812649575513465422392779397427798241835898131172602379380818551661994} a + \frac{13408880696265461458397778067753367282251580203348786092936270080044821778307}{96771966406324787756732711196389698713899120917949065586301189690409275830997}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $24$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3134200286519037400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 25 |
| The 25 conjugacy class representatives for $C_5^2$ |
| Character table for $C_5^2$ is not computed |
Intermediate fields
| 5.5.41371966801.1, \(\Q(\zeta_{11})^+\), 5.5.41371966801.2, 5.5.41371966801.4, 5.5.41371966801.3, 5.5.2825761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{5}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{5}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 41 | Data not computed | ||||||