Normalized defining polynomial
\( x^{25} - 5 x^{24} - 240 x^{23} + 530 x^{22} + 24890 x^{21} + 7594 x^{20} - 1338125 x^{19} - 3194595 x^{18} + 36250180 x^{17} + 160854770 x^{16} - 368499261 x^{15} - 3289109505 x^{14} - 2303086930 x^{13} + 26271143660 x^{12} + 64633222815 x^{11} - 30799326749 x^{10} - 299666707460 x^{9} - 327731536960 x^{8} + 145297331040 x^{7} + 451866407240 x^{6} + 151466421774 x^{5} - 107311399140 x^{4} - 38719949575 x^{3} + 9313043145 x^{2} + 546159595 x - 30329857 \)
Invariants
| Degree: | $25$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[25, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(110975637648877348008932048428738579805221888818778097629547119140625=5^{40}\cdot 101^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $527.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2525=5^{2}\cdot 101\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2525}(1,·)$, $\chi_{2525}(2306,·)$, $\chi_{2525}(196,·)$, $\chi_{2525}(2006,·)$, $\chi_{2525}(2056,·)$, $\chi_{2525}(1801,·)$, $\chi_{2525}(1551,·)$, $\chi_{2525}(1296,·)$, $\chi_{2525}(1046,·)$, $\chi_{2525}(791,·)$, $\chi_{2525}(996,·)$, $\chi_{2525}(1501,·)$, $\chi_{2525}(2511,·)$, $\chi_{2525}(541,·)$, $\chi_{2525}(286,·)$, $\chi_{2525}(36,·)$, $\chi_{2525}(2021,·)$, $\chi_{2525}(2216,·)$, $\chi_{2525}(491,·)$, $\chi_{2525}(1516,·)$, $\chi_{2525}(1711,·)$, $\chi_{2525}(1011,·)$, $\chi_{2525}(1206,·)$, $\chi_{2525}(506,·)$, $\chi_{2525}(701,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{19} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{476} a^{20} + \frac{37}{476} a^{19} + \frac{37}{476} a^{18} - \frac{15}{238} a^{17} - \frac{27}{476} a^{16} - \frac{43}{476} a^{15} - \frac{1}{476} a^{14} + \frac{3}{68} a^{13} - \frac{9}{476} a^{12} - \frac{15}{238} a^{11} - \frac{81}{476} a^{10} - \frac{8}{119} a^{9} + \frac{29}{238} a^{8} - \frac{67}{476} a^{7} + \frac{111}{476} a^{6} + \frac{159}{476} a^{5} + \frac{41}{476} a^{4} + \frac{15}{34} a^{3} - \frac{73}{238} a^{2} - \frac{111}{476} a + \frac{45}{238}$, $\frac{1}{476} a^{21} - \frac{23}{476} a^{19} + \frac{29}{476} a^{18} + \frac{3}{119} a^{17} + \frac{1}{119} a^{16} + \frac{43}{476} a^{15} + \frac{29}{238} a^{14} + \frac{47}{476} a^{13} - \frac{27}{238} a^{12} - \frac{3}{34} a^{11} - \frac{129}{476} a^{10} - \frac{67}{476} a^{9} - \frac{71}{476} a^{8} + \frac{13}{68} a^{7} + \frac{31}{68} a^{6} + \frac{27}{119} a^{5} + \frac{121}{476} a^{4} - \frac{181}{476} a^{3} - \frac{183}{476} a^{2} + \frac{151}{476} a - \frac{59}{119}$, $\frac{1}{476} a^{22} + \frac{47}{476} a^{19} + \frac{15}{238} a^{18} + \frac{1}{17} a^{17} + \frac{1}{28} a^{16} + \frac{3}{68} a^{15} + \frac{6}{119} a^{14} - \frac{47}{476} a^{13} - \frac{11}{476} a^{12} - \frac{15}{68} a^{11} + \frac{53}{119} a^{10} - \frac{53}{119} a^{9} - \frac{61}{238} a^{8} + \frac{223}{476} a^{7} - \frac{195}{476} a^{6} + \frac{52}{119} a^{5} + \frac{167}{476} a^{4} + \frac{125}{476} a^{3} - \frac{113}{476} a^{2} + \frac{93}{238} a - \frac{18}{119}$, $\frac{1}{952} a^{23} - \frac{1}{952} a^{22} - \frac{1}{952} a^{21} - \frac{1}{952} a^{20} + \frac{15}{952} a^{19} + \frac{97}{952} a^{18} + \frac{27}{238} a^{17} + \frac{53}{476} a^{16} - \frac{59}{476} a^{15} + \frac{19}{476} a^{14} - \frac{67}{952} a^{13} + \frac{5}{136} a^{12} + \frac{19}{136} a^{11} - \frac{453}{952} a^{10} + \frac{48}{119} a^{9} - \frac{113}{476} a^{8} - \frac{67}{238} a^{7} - \frac{191}{476} a^{6} + \frac{215}{476} a^{5} + \frac{65}{476} a^{4} + \frac{27}{119} a^{3} - \frac{13}{34} a^{2} - \frac{317}{952} a + \frac{9}{56}$, $\frac{1}{5159898649226105669802084204752246168649401119334573727038531158523173390829267425433663285505389939349230896} a^{24} + \frac{57571995438625241089937529708782225011463376880520985803554006463515949967838718733547409930831216665353}{322493665576631604362630262797015385540587569958410857939908197407698336926829214089603955344086871209326931} a^{23} - \frac{552336174209629836733746366624765837536498193209950357644770385955299598217350512358718174265750466519041}{644987331153263208725260525594030771081175139916821715879816394815396673853658428179207910688173742418653862} a^{22} - \frac{1135224921040819650582337486752047455610657771266204707003134570989877463464010101952637509053113408351483}{2579949324613052834901042102376123084324700559667286863519265579261586695414633712716831642752694969674615448} a^{21} - \frac{166713405580486187967230008302656184479840296460503441990802284415304079201470112853705581451669286704459}{184282094615218059635788721598294506023192897119091918822804684232970478243902408051202260196621069262472532} a^{20} - \frac{28633506307436407075944479871462790232938859247141392947310144471503426588568064066997037643231879847065117}{2579949324613052834901042102376123084324700559667286863519265579261586695414633712716831642752694969674615448} a^{19} - \frac{1905608114968251391207647741811070220067980743573774442676214199220019985095419127717031190564528709740557}{43360492850639543443714993317245766123104211086845157370071690407757759586800566600282884752146133944111184} a^{18} + \frac{209195957792436226975802553398257842142774371090741497829728404398296155741986037140392747416267114892253039}{2579949324613052834901042102376123084324700559667286863519265579261586695414633712716831642752694969674615448} a^{17} + \frac{117690586366419022962823237498679766581780695899376249454560431677288940539941050239151799671627216767746489}{2579949324613052834901042102376123084324700559667286863519265579261586695414633712716831642752694969674615448} a^{16} - \frac{133234161488552421601438871197498491300241370364474028858914479469010392396529092406337634439776354864048141}{1289974662306526417450521051188061542162350279833643431759632789630793347707316856358415821376347484837307724} a^{15} - \frac{348844092920876249780495833451752506519468795793792945634182502231064590054197557949198619804762387259868461}{5159898649226105669802084204752246168649401119334573727038531158523173390829267425433663285505389939349230896} a^{14} - \frac{18975648234288168740534534302618763189505799884319114486547266065895446038406782784985524660341467265827471}{368564189230436119271577443196589012046385794238183837645609368465940956487804816102404520393242138524945064} a^{13} + \frac{90307956642145469061663313538027241515721609990510663266276991689598739028692769420267131078845415856830437}{1289974662306526417450521051188061542162350279833643431759632789630793347707316856358415821376347484837307724} a^{12} + \frac{16811306196929290336252686753191497802847374657627168131120059686103637714017030668120644595643553894060507}{184282094615218059635788721598294506023192897119091918822804684232970478243902408051202260196621069262472532} a^{11} - \frac{1645157705797226261713683347710639543994499524209906343868481533321953433541794079888136498047927337735866269}{5159898649226105669802084204752246168649401119334573727038531158523173390829267425433663285505389939349230896} a^{10} + \frac{617133734700998958011898488832177848371151281831481237473919519120575570884629067801992466488312029715571725}{2579949324613052834901042102376123084324700559667286863519265579261586695414633712716831642752694969674615448} a^{9} + \frac{378318887169181016044307791649006165106715532311537377545075375430737952640352211466258574158210060027599705}{2579949324613052834901042102376123084324700559667286863519265579261586695414633712716831642752694969674615448} a^{8} + \frac{19897876139111335451701081210046338263921991821276746320758359199938369495248248686340270799476818294290611}{151761724977238402053002476610360181430864738803958050795250916427152158553801983100990096632511468804389144} a^{7} + \frac{1165124606236092065309696074332815317072841214330283414776068281082913779150288577320599753061772535141087949}{2579949324613052834901042102376123084324700559667286863519265579261586695414633712716831642752694969674615448} a^{6} + \frac{75450707678870490017995466822416011559356248390361059451850992202860599732225350733074908583365305186762459}{151761724977238402053002476610360181430864738803958050795250916427152158553801983100990096632511468804389144} a^{5} - \frac{530211179929536869295212077820490839404560762648821742663366249665785827923007521339133861351561307815532423}{1289974662306526417450521051188061542162350279833643431759632789630793347707316856358415821376347484837307724} a^{4} + \frac{47402590125915636779463614635416135486302819844293900283097215789555799380155232342045377935729363527755861}{322493665576631604362630262797015385540587569958410857939908197407698336926829214089603955344086871209326931} a^{3} + \frac{39625617977511721726135199904647053024647232661720664981263116885986943030273734555759846146990279460316799}{737128378460872238543154886393178024092771588476367675291218736931881912975609632204809040786484277049890128} a^{2} + \frac{621745211225496631395590814851502536122437094397842157767279804175586911592290077417062165728458617955259471}{2579949324613052834901042102376123084324700559667286863519265579261586695414633712716831642752694969674615448} a - \frac{121641307554600115742144430128248532169957628064165534981216818918022250186237526209148060127645516739965391}{303523449954476804106004953220720362861729477607916101590501832854304317107603966201980193265022937608778288}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $24$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 113526971950914610000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 25 |
| The 25 conjugacy class representatives for $C_5^2$ |
| Character table for $C_5^2$ is not computed |
Intermediate fields
| 5.5.390625.1, 5.5.40648594140625.2, 5.5.40648594140625.5, 5.5.40648594140625.3, 5.5.40648594140625.4, 5.5.104060401.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{5}$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $101$ | 101.5.4.1 | $x^{5} - 101$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 101.5.4.1 | $x^{5} - 101$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 101.5.4.1 | $x^{5} - 101$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 101.5.4.1 | $x^{5} - 101$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 101.5.4.1 | $x^{5} - 101$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |