Normalized defining polynomial
\( x^{25} - x^{24} - 360 x^{23} + 561 x^{22} + 50509 x^{21} - 71185 x^{20} - 3762281 x^{19} + 3222735 x^{18} + 167015969 x^{17} - 11071180 x^{16} - 4593891060 x^{15} - 3802678517 x^{14} + 76639409753 x^{13} + 134888109273 x^{12} - 701125573722 x^{11} - 2002221575510 x^{10} + 2498218571582 x^{9} + 13615398610851 x^{8} + 4915687383185 x^{7} - 37245464805375 x^{6} - 49405455102305 x^{5} + 13790562028053 x^{4} + 66222925208094 x^{3} + 41570931977659 x^{2} + 4021161749229 x - 2175105944071 \)
Invariants
| Degree: | $25$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[25, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1035996976866061687572354401200188865607516483497915359292674342768001=751^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $576.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $751$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(751\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{751}(1,·)$, $\chi_{751}(450,·)$, $\chi_{751}(179,·)$, $\chi_{751}(710,·)$, $\chi_{751}(193,·)$, $\chi_{751}(392,·)$, $\chi_{751}(460,·)$, $\chi_{751}(499,·)$, $\chi_{751}(80,·)$, $\chi_{751}(466,·)$, $\chi_{751}(666,·)$, $\chi_{751}(475,·)$, $\chi_{751}(348,·)$, $\chi_{751}(325,·)$, $\chi_{751}(481,·)$, $\chi_{751}(162,·)$, $\chi_{751}(420,·)$, $\chi_{751}(485,·)$, $\chi_{751}(171,·)$, $\chi_{751}(556,·)$, $\chi_{751}(51,·)$, $\chi_{751}(53,·)$, $\chi_{751}(569,·)$, $\chi_{751}(117,·)$, $\chi_{751}(703,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{73} a^{21} + \frac{18}{73} a^{20} + \frac{2}{73} a^{19} - \frac{9}{73} a^{18} - \frac{13}{73} a^{17} - \frac{26}{73} a^{16} - \frac{21}{73} a^{15} + \frac{20}{73} a^{14} + \frac{3}{73} a^{13} + \frac{29}{73} a^{12} + \frac{22}{73} a^{11} + \frac{22}{73} a^{10} - \frac{35}{73} a^{9} - \frac{35}{73} a^{8} + \frac{23}{73} a^{7} + \frac{3}{73} a^{6} - \frac{19}{73} a^{5} - \frac{24}{73} a^{4} + \frac{15}{73} a^{3} + \frac{36}{73} a^{2} + \frac{16}{73} a + \frac{4}{73}$, $\frac{1}{73} a^{22} - \frac{30}{73} a^{20} + \frac{28}{73} a^{19} + \frac{3}{73} a^{18} - \frac{11}{73} a^{17} + \frac{9}{73} a^{16} + \frac{33}{73} a^{15} + \frac{8}{73} a^{14} - \frac{25}{73} a^{13} + \frac{11}{73} a^{12} - \frac{9}{73} a^{11} + \frac{7}{73} a^{10} + \frac{11}{73} a^{9} - \frac{4}{73} a^{8} + \frac{27}{73} a^{7} + \frac{26}{73} a^{5} + \frac{9}{73} a^{4} - \frac{15}{73} a^{3} + \frac{25}{73} a^{2} + \frac{8}{73} a + \frac{1}{73}$, $\frac{1}{73} a^{23} - \frac{16}{73} a^{20} - \frac{10}{73} a^{19} + \frac{11}{73} a^{18} - \frac{16}{73} a^{17} - \frac{17}{73} a^{16} + \frac{35}{73} a^{15} - \frac{9}{73} a^{14} + \frac{28}{73} a^{13} - \frac{15}{73} a^{12} + \frac{10}{73} a^{11} + \frac{14}{73} a^{10} - \frac{32}{73} a^{9} - \frac{1}{73} a^{8} + \frac{33}{73} a^{7} - \frac{30}{73} a^{6} + \frac{23}{73} a^{5} - \frac{5}{73} a^{4} - \frac{36}{73} a^{3} - \frac{7}{73} a^{2} - \frac{30}{73} a - \frac{26}{73}$, $\frac{1}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{24} + \frac{169061521982828018888876149797502453835524837317731165027966767275292704168199960963363274044765092578902421380874567739346456873669323142550292}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{23} - \frac{1360553996384048883263448100409768516779425862326312505116207664379038707804694136037256463480450956410544474075102501702938700958890747173154361}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{22} + \frac{1434076012174694367642668385601037538301399422347761108425445136555925228520852212115710264250770169803754876859386288672584378096266915195727512}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{21} + \frac{32443048747362347961194081563688465758334274669444413183183952944437514257207476029270504879989233752122663224260271488483144166316749361917617469}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{20} + \frac{4039113819932412757940468445045096003320313952937137876934766063141953605101675657273754043594548429784631865328696798341652058987736162326205623}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{19} + \frac{69631162272475950163036098563383267778486975665194597341622425923024883294974288975046170208405914256947195822083493679667972913226836528045221926}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{18} + \frac{66562122874601122228461135828442057774711823213435614892661446084672661093175836897931462383620950869981665391044171627355731264947326470364280327}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{17} - \frac{64635135886194078067534692430835363544865841713370807833901539238582822374767855788076718638209044482400815319769964895223118836065092894271840874}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{16} - \frac{39076225368355549588383321966809243680694740032416166443909759887838490768138614792276178441638163357373900350535503847631076626328788132924217843}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{15} + \frac{36534197445346444872892423097330681622678647753786326988224689131621325719258704426019094612393005655155609063245481749890626182882358628627424662}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{14} - \frac{27432783179309035052711446202156743761685772454431703637620570405983785943173033414191286551878511137942900577584359573450867727858257555906866889}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{13} - \frac{101396186594361488764616676130244506280482051237423920290018524545288399665305709956371584675880284147312716304183449556616638667281702676859961560}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{12} - \frac{4394200208206665598144416418057568452874901963459897093163650456689029797076280244676040014946147456379062700939100777875997362527678678373372324}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{11} + \frac{44995272586902276975206940266512362250125328840667913122853317894124528307812714609690655962896719114287395312658258576841598215222218542212664769}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{10} + \frac{69435547651819004828067789014882308191051614031079296609735164696738807234746822531488057458972131367739078206966272705113008950424984359527760683}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{9} + \frac{58236687436643242607994111823753053961377582437302939548579547705604151534061942100790095033497360169241034264826925507114961637667283478929253612}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{8} - \frac{90223438375078085313496619577088953292234031205188256897412949810748398371345749327074957733838034511174264246061769100072628937708666766544955495}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{7} + \frac{79269973866073090800463561101663962403947073097604364121701794015358532291660641345127889258908164159565729040775302545210187796011450885420484745}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{6} + \frac{1224120565613055613557627156509514132807241955827992445414316571997513091085248633794531544483977909329548017991070837040620077073046257404594405}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{5} - \frac{89989358313114459522160895874568339145473272418361597154833798483632251760277532613501355687891929145063075794345295617150195202287611387939046286}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{4} - \frac{85307167554023014939068058066919375936417660284193790691542515381906783323949911864997429501316386313456517805345900852854387208370989272773622596}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{3} + \frac{22111378289558033336747734612042453980558788827422016082305859399366954302411696560341143655025869388276825835319813950642949802484805442622329482}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a^{2} - \frac{50885411670243319424443181370862636298430278003636268951844005363337213715433417844539559453826791231254636670496104672695268404763223732205543388}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081} a + \frac{75342039097290790063023747689924888066597588297020718943061905659059628829911424969871648313509127495486864913186087991168559264258554766986311142}{230367483464878429769285235159061131552350727705412259678963025567032129596758719154010991680521844525325836677292085395207161427078241485378307081}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $24$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 295898715808607820000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 25 |
| The 25 conjugacy class representatives for $C_{25}$ |
| Character table for $C_{25}$ is not computed |
Intermediate fields
| 5.5.318097128001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $25$ | $25$ | $25$ | $25$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{5}$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | $25$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{5}$ | $25$ | $25$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{5}$ | $25$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 751 | Data not computed | ||||||