Properties

Label 25.1.422...000.1
Degree $25$
Signature $[1, 12]$
Discriminant $4.225\times 10^{50}$
Root discriminant \(105.93\)
Ramified primes $2,5,23,29,35541523,212450981$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{25}$ (as 25T211)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^25 + 5*x - 4)
 
gp: K = bnfinit(y^25 + 5*y - 4, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^25 + 5*x - 4);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 + 5*x - 4)
 

\( x^{25} + 5x - 4 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $25$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(422484236016954220667207680000000000000000000000000\) \(\medspace = 2^{48}\cdot 5^{25}\cdot 23\cdot 29\cdot 35541523\cdot 212450981\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(105.93\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(5\), \(23\), \(29\), \(35541523\), \(212450981\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{25182\!\cdots\!50105}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $10a^{24}-16a^{23}-29a^{22}+19a^{21}-4a^{20}-37a^{19}+21a^{18}+12a^{17}-47a^{16}+18a^{15}+33a^{14}-54a^{13}+6a^{12}+59a^{11}-57a^{10}-18a^{9}+85a^{8}-52a^{7}-55a^{6}+106a^{5}-30a^{4}-105a^{3}+123a^{2}+10a-105$, $a^{24}-3a^{23}+7a^{22}-3a^{21}-3a^{20}+7a^{19}-8a^{18}+8a^{16}-11a^{15}+6a^{14}+5a^{13}-15a^{12}+11a^{11}-3a^{10}-17a^{9}+19a^{8}-11a^{7}-10a^{6}+26a^{5}-23a^{4}+25a^{2}-40a+21$, $53a^{24}+45a^{23}+37a^{22}+32a^{21}+27a^{20}+19a^{19}+13a^{18}+12a^{17}+6a^{16}+a^{14}-3a^{13}-4a^{12}+4a^{11}+4a^{10}+a^{9}+7a^{8}+11a^{7}+7a^{6}+9a^{5}+10a^{4}-6a^{3}-5a^{2}+4a+253$, $a^{24}+2a^{22}+2a^{21}+2a^{20}+4a^{19}+2a^{18}+6a^{17}+a^{16}+8a^{15}+10a^{13}-3a^{12}+12a^{11}-5a^{10}+12a^{9}-7a^{8}+13a^{7}-10a^{6}+12a^{5}-11a^{4}+11a^{3}-12a^{2}+6a-5$, $14a^{24}+25a^{23}+34a^{22}+36a^{21}+25a^{20}+15a^{19}+11a^{18}+17a^{17}+32a^{16}+36a^{15}+27a^{14}+7a^{13}-10a^{12}-13a^{11}+4a^{10}+17a^{9}+16a^{8}-a^{7}-38a^{6}-48a^{5}-40a^{4}-13a^{3}+11a^{2}+33$, $12a^{24}-14a^{23}-24a^{22}-2a^{21}+26a^{20}+22a^{19}-13a^{18}-35a^{17}-12a^{16}+31a^{15}+37a^{14}-7a^{13}-48a^{12}-27a^{11}+34a^{10}+57a^{9}+3a^{8}-63a^{7}-51a^{6}+33a^{5}+85a^{4}+26a^{3}-77a^{2}-89a+81$, $51a^{24}+36a^{23}-33a^{22}-68a^{21}-11a^{20}+67a^{19}+61a^{18}-28a^{17}-93a^{16}-41a^{15}+77a^{14}+106a^{13}-13a^{12}-130a^{11}-79a^{10}+81a^{9}+154a^{8}+30a^{7}-163a^{6}-155a^{5}+76a^{4}+229a^{3}+84a^{2}-190a+15$, $a^{24}-9a^{23}+12a^{22}-6a^{21}-10a^{20}+18a^{19}-10a^{18}-6a^{17}+17a^{16}-20a^{15}+9a^{14}+16a^{13}-34a^{12}+22a^{11}+11a^{10}-34a^{9}+33a^{8}-12a^{7}-26a^{6}+58a^{5}-42a^{4}-21a^{3}+71a^{2}-64a+19$, $4a^{24}+8a^{23}+5a^{22}-3a^{21}+13a^{20}-4a^{19}-a^{18}+3a^{17}+5a^{16}-13a^{15}+14a^{14}-2a^{13}-a^{12}-2a^{11}+10a^{10}-16a^{9}+4a^{7}-7a^{6}-11a^{5}+18a^{4}+2a^{3}-29a^{2}+33a+9$, $8a^{24}-28a^{23}+23a^{22}+5a^{21}-28a^{20}+37a^{19}-9a^{18}-13a^{17}+58a^{16}-32a^{15}+a^{14}+62a^{13}-52a^{12}+41a^{11}+52a^{10}-86a^{9}+78a^{8}+25a^{7}-87a^{6}+127a^{5}-46a^{4}-87a^{3}+172a^{2}-113a+9$, $a^{23}-2a^{22}+5a^{21}-9a^{20}+15a^{19}-21a^{18}+27a^{17}-30a^{16}+29a^{15}-23a^{14}+13a^{13}-13a^{11}+23a^{10}-29a^{9}+30a^{8}-27a^{7}+21a^{6}-15a^{5}+9a^{4}-5a^{3}+2a^{2}-a+1$, $25a^{24}-26a^{23}+3a^{22}+22a^{21}-18a^{20}-4a^{19}+11a^{18}+20a^{17}-54a^{16}+44a^{15}+21a^{14}-84a^{13}+80a^{12}-12a^{11}-44a^{10}+27a^{9}+31a^{8}-41a^{7}-37a^{6}+114a^{5}-80a^{4}-61a^{3}+157a^{2}-80a+3$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 8383885813460554.0 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{12}\cdot 8383885813460554.0 \cdot 1}{2\cdot\sqrt{422484236016954220667207680000000000000000000000000}}\cr\approx \mathstrut & 1.54418212372167 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^25 + 5*x - 4)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^25 + 5*x - 4, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^25 + 5*x - 4);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 + 5*x - 4);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{25}$ (as 25T211):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 15511210043330985984000000
The 1958 conjugacy class representatives for $S_{25}$ are not computed
Character table for $S_{25}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.10.0.1}{10} }{,}\,{\href{/padicField/3.9.0.1}{9} }{,}\,{\href{/padicField/3.6.0.1}{6} }$ R ${\href{/padicField/7.14.0.1}{14} }{,}\,{\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ $16{,}\,{\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ $20{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ $25$ ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ R R ${\href{/padicField/31.10.0.1}{10} }{,}\,{\href{/padicField/31.9.0.1}{9} }{,}\,{\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ $16{,}\,{\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.14.0.1}{14} }{,}\,{\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.4.0.1}{4} }$ ${\href{/padicField/43.11.0.1}{11} }{,}\,{\href{/padicField/43.9.0.1}{9} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ $22{,}\,{\href{/padicField/47.3.0.1}{3} }$ $19{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.11.0.1}{11} }{,}\,{\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.8.16.64$x^{8} + 2 x^{4} + 4 x + 2$$8$$1$$16$$V_4^2:(S_3\times C_2)$$[4/3, 4/3, 2, 7/3, 7/3]_{3}^{2}$
Deg $16$$8$$2$$32$
\(5\) Copy content Toggle raw display Deg $25$$25$$1$$25$
\(23\) Copy content Toggle raw display 23.2.1.2$x^{2} + 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.7.0.1$x^{7} + 21 x + 18$$1$$7$$0$$C_7$$[\ ]^{7}$
23.16.0.1$x^{16} + 19 x^{7} + 19 x^{6} + 16 x^{5} + 13 x^{4} + x^{3} + 14 x^{2} + 17 x + 5$$1$$16$$0$$C_{16}$$[\ ]^{16}$
\(29\) Copy content Toggle raw display $\Q_{29}$$x + 27$$1$$1$$0$Trivial$[\ ]$
29.2.1.1$x^{2} + 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.22.0.1$x^{22} - x + 2$$1$$22$$0$22T1$[\ ]^{22}$
\(35541523\) Copy content Toggle raw display $\Q_{35541523}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $18$$1$$18$$0$$C_{18}$$[\ ]^{18}$
\(212450981\) Copy content Toggle raw display $\Q_{212450981}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $14$$1$$14$$0$$C_{14}$$[\ ]^{14}$