Properties

Label 25.1.233...921.1
Degree $25$
Signature $[1, 12]$
Discriminant $2.337\times 10^{49}$
Root discriminant \(94.35\)
Ramified primes $11,239$
Class number $5$ (GRH)
Class group [5] (GRH)
Galois group $D_{25}$ (as 25T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^25 - 7*x^24 + 49*x^23 - 283*x^22 + 1302*x^21 - 5636*x^20 + 22809*x^19 - 80739*x^18 + 282358*x^17 - 893429*x^16 + 2621604*x^15 - 6788665*x^14 + 15933765*x^13 - 33100241*x^12 + 60008112*x^11 - 95295391*x^10 + 131154926*x^9 - 150037171*x^8 + 139788299*x^7 - 104949621*x^6 + 56076967*x^5 - 27454311*x^4 + 20655635*x^3 - 14146574*x^2 + 4203471*x - 447083)
 
gp: K = bnfinit(y^25 - 7*y^24 + 49*y^23 - 283*y^22 + 1302*y^21 - 5636*y^20 + 22809*y^19 - 80739*y^18 + 282358*y^17 - 893429*y^16 + 2621604*y^15 - 6788665*y^14 + 15933765*y^13 - 33100241*y^12 + 60008112*y^11 - 95295391*y^10 + 131154926*y^9 - 150037171*y^8 + 139788299*y^7 - 104949621*y^6 + 56076967*y^5 - 27454311*y^4 + 20655635*y^3 - 14146574*y^2 + 4203471*y - 447083, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^25 - 7*x^24 + 49*x^23 - 283*x^22 + 1302*x^21 - 5636*x^20 + 22809*x^19 - 80739*x^18 + 282358*x^17 - 893429*x^16 + 2621604*x^15 - 6788665*x^14 + 15933765*x^13 - 33100241*x^12 + 60008112*x^11 - 95295391*x^10 + 131154926*x^9 - 150037171*x^8 + 139788299*x^7 - 104949621*x^6 + 56076967*x^5 - 27454311*x^4 + 20655635*x^3 - 14146574*x^2 + 4203471*x - 447083);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 - 7*x^24 + 49*x^23 - 283*x^22 + 1302*x^21 - 5636*x^20 + 22809*x^19 - 80739*x^18 + 282358*x^17 - 893429*x^16 + 2621604*x^15 - 6788665*x^14 + 15933765*x^13 - 33100241*x^12 + 60008112*x^11 - 95295391*x^10 + 131154926*x^9 - 150037171*x^8 + 139788299*x^7 - 104949621*x^6 + 56076967*x^5 - 27454311*x^4 + 20655635*x^3 - 14146574*x^2 + 4203471*x - 447083)
 

\( x^{25} - 7 x^{24} + 49 x^{23} - 283 x^{22} + 1302 x^{21} - 5636 x^{20} + 22809 x^{19} - 80739 x^{18} + \cdots - 447083 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $25$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(23368375067493109808662942110693103411946589151921\) \(\medspace = 11^{20}\cdot 239^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(94.35\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{4/5}239^{1/2}\approx 105.27205446317937$
Ramified primes:   \(11\), \(239\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{17}a^{14}+\frac{5}{17}a^{13}-\frac{7}{17}a^{12}-\frac{1}{17}a^{11}-\frac{1}{17}a^{10}-\frac{5}{17}a^{9}-\frac{1}{17}a^{6}-\frac{5}{17}a^{5}+\frac{7}{17}a^{4}+\frac{1}{17}a^{3}+\frac{1}{17}a^{2}+\frac{5}{17}a$, $\frac{1}{17}a^{15}+\frac{2}{17}a^{13}+\frac{4}{17}a^{11}+\frac{8}{17}a^{9}-\frac{1}{17}a^{7}-\frac{2}{17}a^{5}-\frac{4}{17}a^{3}-\frac{8}{17}a$, $\frac{1}{17}a^{16}+\frac{7}{17}a^{13}+\frac{1}{17}a^{12}+\frac{2}{17}a^{11}-\frac{7}{17}a^{10}-\frac{7}{17}a^{9}-\frac{1}{17}a^{8}-\frac{7}{17}a^{5}-\frac{1}{17}a^{4}-\frac{2}{17}a^{3}+\frac{7}{17}a^{2}+\frac{7}{17}a$, $\frac{1}{119}a^{17}-\frac{3}{119}a^{16}-\frac{3}{119}a^{15}-\frac{2}{119}a^{14}-\frac{54}{119}a^{13}+\frac{11}{119}a^{12}+\frac{18}{119}a^{11}+\frac{57}{119}a^{10}+\frac{58}{119}a^{9}+\frac{3}{119}a^{8}+\frac{20}{119}a^{7}-\frac{15}{119}a^{6}+\frac{54}{119}a^{5}-\frac{45}{119}a^{4}+\frac{50}{119}a^{3}-\frac{6}{119}a^{2}-\frac{25}{119}a$, $\frac{1}{119}a^{18}+\frac{2}{119}a^{16}+\frac{3}{119}a^{15}+\frac{3}{119}a^{14}+\frac{52}{119}a^{13}-\frac{19}{119}a^{12}+\frac{13}{119}a^{11}-\frac{3}{7}a^{10}-\frac{5}{119}a^{9}+\frac{15}{119}a^{8}+\frac{31}{119}a^{7}-\frac{54}{119}a^{6}+\frac{33}{119}a^{5}-\frac{15}{119}a^{4}+\frac{4}{119}a^{3}-\frac{1}{119}a^{2}-\frac{12}{119}a$, $\frac{1}{119}a^{19}+\frac{2}{119}a^{16}+\frac{2}{119}a^{15}-\frac{16}{119}a^{13}+\frac{19}{119}a^{12}+\frac{46}{119}a^{11}-\frac{2}{17}a^{10}+\frac{53}{119}a^{9}+\frac{32}{119}a^{8}+\frac{32}{119}a^{7}-\frac{18}{119}a^{5}-\frac{53}{119}a^{4}+\frac{4}{119}a^{3}+\frac{2}{17}a^{2}+\frac{15}{119}a$, $\frac{1}{29393}a^{20}-\frac{2}{4199}a^{19}-\frac{5}{2261}a^{18}-\frac{10}{29393}a^{17}+\frac{797}{29393}a^{16}+\frac{401}{29393}a^{15}-\frac{565}{29393}a^{14}-\frac{9993}{29393}a^{13}-\frac{10429}{29393}a^{12}+\frac{1179}{29393}a^{11}+\frac{11714}{29393}a^{10}-\frac{6618}{29393}a^{9}+\frac{433}{2261}a^{8}+\frac{708}{2261}a^{7}+\frac{7263}{29393}a^{6}+\frac{12050}{29393}a^{5}-\frac{1240}{4199}a^{4}-\frac{5466}{29393}a^{3}-\frac{10068}{29393}a^{2}+\frac{4146}{29393}a+\frac{6}{19}$, $\frac{1}{499681}a^{21}+\frac{2}{499681}a^{20}+\frac{452}{499681}a^{19}-\frac{2038}{499681}a^{18}+\frac{125}{38437}a^{17}-\frac{97}{71383}a^{16}-\frac{2053}{499681}a^{15}+\frac{1962}{499681}a^{14}-\frac{119188}{499681}a^{13}-\frac{15101}{38437}a^{12}+\frac{97268}{499681}a^{11}-\frac{117076}{499681}a^{10}-\frac{230428}{499681}a^{9}-\frac{4220}{38437}a^{8}-\frac{11120}{26299}a^{7}+\frac{15357}{38437}a^{6}+\frac{10046}{29393}a^{5}+\frac{155018}{499681}a^{4}+\frac{5828}{71383}a^{3}-\frac{28313}{71383}a^{2}-\frac{6231}{29393}a+\frac{9}{19}$, $\frac{1}{499681}a^{22}+\frac{6}{499681}a^{20}-\frac{953}{499681}a^{19}+\frac{839}{499681}a^{18}+\frac{491}{499681}a^{17}+\frac{12344}{499681}a^{16}+\frac{13582}{499681}a^{15}-\frac{3551}{499681}a^{14}-\frac{189324}{499681}a^{13}-\frac{191228}{499681}a^{12}+\frac{17806}{71383}a^{11}+\frac{37095}{499681}a^{10}+\frac{190300}{499681}a^{9}-\frac{24422}{71383}a^{8}+\frac{11599}{71383}a^{7}-\frac{96342}{499681}a^{6}-\frac{79140}{499681}a^{5}+\frac{149334}{499681}a^{4}-\frac{766}{3757}a^{3}-\frac{222707}{499681}a^{2}+\frac{367}{4199}a-\frac{3}{19}$, $\frac{1}{424718356699}a^{23}-\frac{2141}{24983432747}a^{22}-\frac{32388}{32670642823}a^{21}+\frac{523525}{32670642823}a^{20}+\frac{1451038279}{424718356699}a^{19}+\frac{24309496}{32670642823}a^{18}-\frac{365687278}{424718356699}a^{17}-\frac{40721965}{424718356699}a^{16}+\frac{64940826}{4667234689}a^{15}+\frac{175565508}{60674050957}a^{14}+\frac{99014949361}{424718356699}a^{13}-\frac{78858756512}{424718356699}a^{12}-\frac{207562259935}{424718356699}a^{11}+\frac{160139365682}{424718356699}a^{10}+\frac{87133810018}{424718356699}a^{9}-\frac{6546645438}{60674050957}a^{8}-\frac{148144804447}{424718356699}a^{7}-\frac{152884654180}{424718356699}a^{6}-\frac{8777527503}{60674050957}a^{5}+\frac{55550647744}{424718356699}a^{4}+\frac{197603666941}{424718356699}a^{3}+\frac{70599098690}{424718356699}a^{2}-\frac{11444102875}{24983432747}a-\frac{2017682}{16149601}$, $\frac{1}{58\!\cdots\!61}a^{24}-\frac{14\!\cdots\!71}{58\!\cdots\!61}a^{23}-\frac{37\!\cdots\!22}{82\!\cdots\!23}a^{22}+\frac{17\!\cdots\!08}{44\!\cdots\!97}a^{21}-\frac{15\!\cdots\!96}{10\!\cdots\!37}a^{20}-\frac{81\!\cdots\!01}{58\!\cdots\!61}a^{19}-\frac{20\!\cdots\!15}{58\!\cdots\!61}a^{18}-\frac{19\!\cdots\!23}{58\!\cdots\!61}a^{17}-\frac{32\!\cdots\!60}{58\!\cdots\!61}a^{16}-\frac{53\!\cdots\!84}{58\!\cdots\!61}a^{15}-\frac{71\!\cdots\!62}{58\!\cdots\!61}a^{14}+\frac{13\!\cdots\!25}{58\!\cdots\!61}a^{13}+\frac{63\!\cdots\!99}{82\!\cdots\!23}a^{12}+\frac{97\!\cdots\!67}{58\!\cdots\!61}a^{11}-\frac{35\!\cdots\!66}{82\!\cdots\!23}a^{10}-\frac{15\!\cdots\!75}{30\!\cdots\!19}a^{9}+\frac{17\!\cdots\!63}{82\!\cdots\!23}a^{8}+\frac{28\!\cdots\!15}{58\!\cdots\!61}a^{7}-\frac{67\!\cdots\!92}{58\!\cdots\!61}a^{6}-\frac{42\!\cdots\!83}{58\!\cdots\!61}a^{5}-\frac{60\!\cdots\!44}{58\!\cdots\!61}a^{4}+\frac{26\!\cdots\!01}{58\!\cdots\!61}a^{3}-\frac{28\!\cdots\!07}{58\!\cdots\!61}a^{2}-\frac{12\!\cdots\!96}{34\!\cdots\!33}a+\frac{29\!\cdots\!21}{12\!\cdots\!67}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $17$

Class group and class number

$C_{5}$, which has order $5$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{20\!\cdots\!08}{20\!\cdots\!37}a^{24}-\frac{13\!\cdots\!59}{20\!\cdots\!37}a^{23}+\frac{95\!\cdots\!11}{20\!\cdots\!37}a^{22}-\frac{41\!\cdots\!66}{16\!\cdots\!49}a^{21}+\frac{46\!\cdots\!52}{39\!\cdots\!29}a^{20}-\frac{10\!\cdots\!17}{20\!\cdots\!37}a^{19}+\frac{60\!\cdots\!15}{29\!\cdots\!91}a^{18}-\frac{14\!\cdots\!61}{20\!\cdots\!37}a^{17}+\frac{51\!\cdots\!13}{20\!\cdots\!37}a^{16}-\frac{16\!\cdots\!13}{20\!\cdots\!37}a^{15}+\frac{46\!\cdots\!24}{20\!\cdots\!37}a^{14}-\frac{11\!\cdots\!74}{20\!\cdots\!37}a^{13}+\frac{27\!\cdots\!50}{20\!\cdots\!37}a^{12}-\frac{80\!\cdots\!28}{29\!\cdots\!91}a^{11}+\frac{99\!\cdots\!60}{20\!\cdots\!37}a^{10}-\frac{11\!\cdots\!24}{15\!\cdots\!89}a^{9}+\frac{20\!\cdots\!84}{20\!\cdots\!37}a^{8}-\frac{22\!\cdots\!07}{20\!\cdots\!37}a^{7}+\frac{20\!\cdots\!59}{20\!\cdots\!37}a^{6}-\frac{14\!\cdots\!27}{20\!\cdots\!37}a^{5}+\frac{38\!\cdots\!81}{11\!\cdots\!23}a^{4}-\frac{45\!\cdots\!16}{20\!\cdots\!37}a^{3}+\frac{33\!\cdots\!46}{20\!\cdots\!37}a^{2}-\frac{13\!\cdots\!73}{12\!\cdots\!61}a+\frac{10\!\cdots\!86}{46\!\cdots\!39}$, $\frac{10\!\cdots\!54}{20\!\cdots\!37}a^{24}-\frac{70\!\cdots\!99}{20\!\cdots\!37}a^{23}+\frac{49\!\cdots\!08}{20\!\cdots\!37}a^{22}-\frac{21\!\cdots\!09}{16\!\cdots\!49}a^{21}+\frac{24\!\cdots\!20}{39\!\cdots\!29}a^{20}-\frac{79\!\cdots\!27}{29\!\cdots\!91}a^{19}+\frac{22\!\cdots\!98}{20\!\cdots\!37}a^{18}-\frac{78\!\cdots\!75}{20\!\cdots\!37}a^{17}+\frac{27\!\cdots\!25}{20\!\cdots\!37}a^{16}-\frac{12\!\cdots\!95}{29\!\cdots\!91}a^{15}+\frac{25\!\cdots\!02}{20\!\cdots\!37}a^{14}-\frac{63\!\cdots\!48}{20\!\cdots\!37}a^{13}+\frac{14\!\cdots\!17}{20\!\cdots\!37}a^{12}-\frac{30\!\cdots\!54}{20\!\cdots\!37}a^{11}+\frac{77\!\cdots\!69}{29\!\cdots\!91}a^{10}-\frac{12\!\cdots\!74}{29\!\cdots\!91}a^{9}+\frac{11\!\cdots\!09}{20\!\cdots\!37}a^{8}-\frac{12\!\cdots\!84}{20\!\cdots\!37}a^{7}+\frac{11\!\cdots\!07}{20\!\cdots\!37}a^{6}-\frac{78\!\cdots\!04}{20\!\cdots\!37}a^{5}+\frac{36\!\cdots\!36}{20\!\cdots\!37}a^{4}-\frac{18\!\cdots\!74}{20\!\cdots\!37}a^{3}+\frac{16\!\cdots\!70}{20\!\cdots\!37}a^{2}-\frac{60\!\cdots\!41}{12\!\cdots\!61}a+\frac{39\!\cdots\!59}{46\!\cdots\!39}$, $\frac{10\!\cdots\!38}{58\!\cdots\!61}a^{24}-\frac{32\!\cdots\!41}{58\!\cdots\!61}a^{23}+\frac{22\!\cdots\!13}{58\!\cdots\!61}a^{22}-\frac{11\!\cdots\!94}{44\!\cdots\!97}a^{21}+\frac{16\!\cdots\!41}{10\!\cdots\!37}a^{20}-\frac{38\!\cdots\!24}{58\!\cdots\!61}a^{19}+\frac{16\!\cdots\!93}{58\!\cdots\!61}a^{18}-\frac{66\!\cdots\!57}{58\!\cdots\!61}a^{17}+\frac{33\!\cdots\!68}{82\!\cdots\!23}a^{16}-\frac{80\!\cdots\!12}{58\!\cdots\!61}a^{15}+\frac{25\!\cdots\!06}{58\!\cdots\!61}a^{14}-\frac{73\!\cdots\!19}{58\!\cdots\!61}a^{13}+\frac{18\!\cdots\!52}{58\!\cdots\!61}a^{12}-\frac{43\!\cdots\!27}{58\!\cdots\!61}a^{11}+\frac{88\!\cdots\!42}{58\!\cdots\!61}a^{10}-\frac{22\!\cdots\!17}{82\!\cdots\!23}a^{9}+\frac{24\!\cdots\!94}{58\!\cdots\!61}a^{8}-\frac{32\!\cdots\!55}{58\!\cdots\!61}a^{7}+\frac{34\!\cdots\!55}{58\!\cdots\!61}a^{6}-\frac{28\!\cdots\!47}{58\!\cdots\!61}a^{5}+\frac{16\!\cdots\!16}{58\!\cdots\!61}a^{4}-\frac{11\!\cdots\!47}{33\!\cdots\!09}a^{3}-\frac{46\!\cdots\!46}{58\!\cdots\!61}a^{2}+\frac{17\!\cdots\!72}{34\!\cdots\!33}a-\frac{67\!\cdots\!56}{12\!\cdots\!67}$, $\frac{47\!\cdots\!45}{44\!\cdots\!97}a^{24}-\frac{38\!\cdots\!66}{58\!\cdots\!61}a^{23}+\frac{27\!\cdots\!78}{58\!\cdots\!61}a^{22}-\frac{11\!\cdots\!67}{44\!\cdots\!97}a^{21}+\frac{10\!\cdots\!77}{84\!\cdots\!49}a^{20}-\frac{29\!\cdots\!56}{58\!\cdots\!61}a^{19}+\frac{92\!\cdots\!51}{44\!\cdots\!97}a^{18}-\frac{41\!\cdots\!06}{58\!\cdots\!61}a^{17}+\frac{14\!\cdots\!99}{58\!\cdots\!61}a^{16}-\frac{34\!\cdots\!46}{44\!\cdots\!97}a^{15}+\frac{13\!\cdots\!77}{58\!\cdots\!61}a^{14}-\frac{32\!\cdots\!98}{58\!\cdots\!61}a^{13}+\frac{76\!\cdots\!74}{58\!\cdots\!61}a^{12}-\frac{15\!\cdots\!14}{58\!\cdots\!61}a^{11}+\frac{27\!\cdots\!59}{58\!\cdots\!61}a^{10}-\frac{42\!\cdots\!10}{58\!\cdots\!61}a^{9}+\frac{56\!\cdots\!99}{58\!\cdots\!61}a^{8}-\frac{61\!\cdots\!28}{58\!\cdots\!61}a^{7}+\frac{55\!\cdots\!14}{58\!\cdots\!61}a^{6}-\frac{40\!\cdots\!61}{58\!\cdots\!61}a^{5}+\frac{19\!\cdots\!18}{58\!\cdots\!61}a^{4}-\frac{98\!\cdots\!94}{58\!\cdots\!61}a^{3}+\frac{73\!\cdots\!91}{58\!\cdots\!61}a^{2}-\frac{34\!\cdots\!37}{34\!\cdots\!33}a+\frac{18\!\cdots\!86}{12\!\cdots\!67}$, $\frac{11\!\cdots\!40}{30\!\cdots\!19}a^{24}-\frac{14\!\cdots\!99}{58\!\cdots\!61}a^{23}+\frac{99\!\cdots\!42}{58\!\cdots\!61}a^{22}-\frac{43\!\cdots\!01}{44\!\cdots\!97}a^{21}+\frac{47\!\cdots\!20}{10\!\cdots\!37}a^{20}-\frac{10\!\cdots\!52}{58\!\cdots\!61}a^{19}+\frac{43\!\cdots\!82}{58\!\cdots\!61}a^{18}-\frac{14\!\cdots\!70}{58\!\cdots\!61}a^{17}+\frac{51\!\cdots\!76}{58\!\cdots\!61}a^{16}-\frac{16\!\cdots\!55}{58\!\cdots\!61}a^{15}+\frac{46\!\cdots\!41}{58\!\cdots\!61}a^{14}-\frac{11\!\cdots\!48}{58\!\cdots\!61}a^{13}+\frac{26\!\cdots\!42}{58\!\cdots\!61}a^{12}-\frac{75\!\cdots\!57}{82\!\cdots\!23}a^{11}+\frac{91\!\cdots\!17}{58\!\cdots\!61}a^{10}-\frac{13\!\cdots\!77}{58\!\cdots\!61}a^{9}+\frac{17\!\cdots\!10}{58\!\cdots\!61}a^{8}-\frac{18\!\cdots\!80}{58\!\cdots\!61}a^{7}+\frac{15\!\cdots\!57}{58\!\cdots\!61}a^{6}-\frac{10\!\cdots\!95}{58\!\cdots\!61}a^{5}+\frac{35\!\cdots\!82}{58\!\cdots\!61}a^{4}-\frac{29\!\cdots\!66}{63\!\cdots\!71}a^{3}+\frac{25\!\cdots\!73}{58\!\cdots\!61}a^{2}-\frac{50\!\cdots\!57}{34\!\cdots\!33}a+\frac{21\!\cdots\!14}{12\!\cdots\!67}$, $\frac{22\!\cdots\!79}{63\!\cdots\!71}a^{24}-\frac{95\!\cdots\!96}{58\!\cdots\!61}a^{23}+\frac{71\!\cdots\!38}{58\!\cdots\!61}a^{22}-\frac{15\!\cdots\!44}{23\!\cdots\!63}a^{21}+\frac{22\!\cdots\!78}{84\!\cdots\!49}a^{20}-\frac{65\!\cdots\!91}{58\!\cdots\!61}a^{19}+\frac{19\!\cdots\!72}{44\!\cdots\!97}a^{18}-\frac{80\!\cdots\!28}{58\!\cdots\!61}a^{17}+\frac{15\!\cdots\!13}{30\!\cdots\!19}a^{16}-\frac{89\!\cdots\!69}{63\!\cdots\!71}a^{15}+\frac{22\!\cdots\!75}{58\!\cdots\!61}a^{14}-\frac{50\!\cdots\!25}{58\!\cdots\!61}a^{13}+\frac{10\!\cdots\!77}{58\!\cdots\!61}a^{12}-\frac{18\!\cdots\!08}{58\!\cdots\!61}a^{11}+\frac{25\!\cdots\!04}{58\!\cdots\!61}a^{10}-\frac{29\!\cdots\!71}{58\!\cdots\!61}a^{9}+\frac{22\!\cdots\!58}{58\!\cdots\!61}a^{8}+\frac{32\!\cdots\!01}{58\!\cdots\!61}a^{7}-\frac{22\!\cdots\!47}{58\!\cdots\!61}a^{6}+\frac{30\!\cdots\!52}{58\!\cdots\!61}a^{5}-\frac{37\!\cdots\!36}{58\!\cdots\!61}a^{4}-\frac{15\!\cdots\!71}{58\!\cdots\!61}a^{3}-\frac{98\!\cdots\!20}{58\!\cdots\!61}a^{2}+\frac{51\!\cdots\!67}{34\!\cdots\!33}a-\frac{31\!\cdots\!66}{12\!\cdots\!67}$, $\frac{20\!\cdots\!68}{10\!\cdots\!37}a^{24}-\frac{13\!\cdots\!00}{10\!\cdots\!37}a^{23}+\frac{93\!\cdots\!94}{10\!\cdots\!37}a^{22}-\frac{41\!\cdots\!44}{84\!\cdots\!49}a^{21}+\frac{12\!\cdots\!19}{57\!\cdots\!23}a^{20}-\frac{14\!\cdots\!27}{15\!\cdots\!91}a^{19}+\frac{42\!\cdots\!24}{10\!\cdots\!37}a^{18}-\frac{14\!\cdots\!24}{10\!\cdots\!37}a^{17}+\frac{51\!\cdots\!07}{10\!\cdots\!37}a^{16}-\frac{16\!\cdots\!09}{10\!\cdots\!37}a^{15}+\frac{47\!\cdots\!23}{10\!\cdots\!37}a^{14}-\frac{12\!\cdots\!18}{10\!\cdots\!37}a^{13}+\frac{27\!\cdots\!21}{10\!\cdots\!37}a^{12}-\frac{56\!\cdots\!59}{10\!\cdots\!37}a^{11}+\frac{10\!\cdots\!14}{10\!\cdots\!37}a^{10}-\frac{82\!\cdots\!63}{57\!\cdots\!23}a^{9}+\frac{29\!\cdots\!68}{15\!\cdots\!91}a^{8}-\frac{22\!\cdots\!37}{10\!\cdots\!37}a^{7}+\frac{20\!\cdots\!79}{10\!\cdots\!37}a^{6}-\frac{13\!\cdots\!58}{10\!\cdots\!37}a^{5}+\frac{62\!\cdots\!21}{10\!\cdots\!37}a^{4}-\frac{31\!\cdots\!84}{10\!\cdots\!37}a^{3}+\frac{29\!\cdots\!96}{10\!\cdots\!37}a^{2}-\frac{10\!\cdots\!07}{64\!\cdots\!61}a+\frac{47\!\cdots\!38}{24\!\cdots\!39}$, $\frac{27\!\cdots\!41}{58\!\cdots\!61}a^{24}-\frac{23\!\cdots\!54}{82\!\cdots\!23}a^{23}+\frac{11\!\cdots\!81}{58\!\cdots\!61}a^{22}-\frac{50\!\cdots\!02}{44\!\cdots\!97}a^{21}+\frac{54\!\cdots\!59}{10\!\cdots\!37}a^{20}-\frac{12\!\cdots\!73}{58\!\cdots\!61}a^{19}+\frac{49\!\cdots\!36}{58\!\cdots\!61}a^{18}-\frac{17\!\cdots\!45}{58\!\cdots\!61}a^{17}+\frac{59\!\cdots\!66}{58\!\cdots\!61}a^{16}-\frac{18\!\cdots\!75}{58\!\cdots\!61}a^{15}+\frac{52\!\cdots\!58}{58\!\cdots\!61}a^{14}-\frac{12\!\cdots\!81}{54\!\cdots\!73}a^{13}+\frac{29\!\cdots\!06}{58\!\cdots\!61}a^{12}-\frac{59\!\cdots\!23}{58\!\cdots\!61}a^{11}+\frac{10\!\cdots\!75}{58\!\cdots\!61}a^{10}-\frac{15\!\cdots\!17}{58\!\cdots\!61}a^{9}+\frac{10\!\cdots\!77}{30\!\cdots\!19}a^{8}-\frac{19\!\cdots\!71}{58\!\cdots\!61}a^{7}+\frac{15\!\cdots\!88}{58\!\cdots\!61}a^{6}-\frac{10\!\cdots\!24}{58\!\cdots\!61}a^{5}+\frac{32\!\cdots\!83}{58\!\cdots\!61}a^{4}-\frac{35\!\cdots\!30}{58\!\cdots\!61}a^{3}+\frac{12\!\cdots\!17}{30\!\cdots\!19}a^{2}-\frac{50\!\cdots\!57}{34\!\cdots\!33}a+\frac{29\!\cdots\!06}{12\!\cdots\!67}$, $\frac{36\!\cdots\!39}{58\!\cdots\!61}a^{24}-\frac{16\!\cdots\!63}{58\!\cdots\!61}a^{23}+\frac{92\!\cdots\!13}{58\!\cdots\!61}a^{22}-\frac{34\!\cdots\!00}{44\!\cdots\!97}a^{21}+\frac{24\!\cdots\!42}{10\!\cdots\!37}a^{20}-\frac{21\!\cdots\!81}{30\!\cdots\!19}a^{19}+\frac{13\!\cdots\!89}{58\!\cdots\!61}a^{18}-\frac{14\!\cdots\!44}{58\!\cdots\!61}a^{17}+\frac{22\!\cdots\!19}{58\!\cdots\!61}a^{16}+\frac{15\!\cdots\!73}{58\!\cdots\!61}a^{15}-\frac{12\!\cdots\!98}{58\!\cdots\!61}a^{14}+\frac{66\!\cdots\!46}{58\!\cdots\!61}a^{13}-\frac{21\!\cdots\!86}{58\!\cdots\!61}a^{12}+\frac{78\!\cdots\!78}{82\!\cdots\!23}a^{11}-\frac{16\!\cdots\!42}{82\!\cdots\!23}a^{10}+\frac{19\!\cdots\!71}{58\!\cdots\!61}a^{9}-\frac{25\!\cdots\!98}{58\!\cdots\!61}a^{8}+\frac{18\!\cdots\!22}{44\!\cdots\!97}a^{7}-\frac{16\!\cdots\!39}{58\!\cdots\!61}a^{6}+\frac{42\!\cdots\!04}{58\!\cdots\!61}a^{5}+\frac{59\!\cdots\!42}{58\!\cdots\!61}a^{4}+\frac{15\!\cdots\!35}{58\!\cdots\!61}a^{3}-\frac{25\!\cdots\!43}{58\!\cdots\!61}a^{2}+\frac{54\!\cdots\!04}{34\!\cdots\!33}a-\frac{23\!\cdots\!59}{12\!\cdots\!67}$, $\frac{47\!\cdots\!37}{58\!\cdots\!61}a^{24}-\frac{50\!\cdots\!45}{58\!\cdots\!61}a^{23}+\frac{16\!\cdots\!33}{30\!\cdots\!19}a^{22}-\frac{15\!\cdots\!96}{44\!\cdots\!97}a^{21}+\frac{17\!\cdots\!75}{10\!\cdots\!37}a^{20}-\frac{40\!\cdots\!97}{58\!\cdots\!61}a^{19}+\frac{16\!\cdots\!14}{58\!\cdots\!61}a^{18}-\frac{60\!\cdots\!71}{58\!\cdots\!61}a^{17}+\frac{20\!\cdots\!50}{58\!\cdots\!61}a^{16}-\frac{68\!\cdots\!12}{58\!\cdots\!61}a^{15}+\frac{19\!\cdots\!73}{58\!\cdots\!61}a^{14}-\frac{53\!\cdots\!07}{58\!\cdots\!61}a^{13}+\frac{12\!\cdots\!04}{58\!\cdots\!61}a^{12}-\frac{26\!\cdots\!88}{58\!\cdots\!61}a^{11}+\frac{48\!\cdots\!95}{58\!\cdots\!61}a^{10}-\frac{10\!\cdots\!10}{82\!\cdots\!23}a^{9}+\frac{10\!\cdots\!01}{58\!\cdots\!61}a^{8}-\frac{16\!\cdots\!30}{82\!\cdots\!23}a^{7}+\frac{14\!\cdots\!90}{82\!\cdots\!23}a^{6}-\frac{10\!\cdots\!65}{82\!\cdots\!23}a^{5}+\frac{28\!\cdots\!54}{58\!\cdots\!61}a^{4}-\frac{37\!\cdots\!21}{23\!\cdots\!63}a^{3}+\frac{17\!\cdots\!77}{58\!\cdots\!61}a^{2}-\frac{43\!\cdots\!46}{34\!\cdots\!33}a+\frac{21\!\cdots\!94}{12\!\cdots\!67}$, $\frac{30\!\cdots\!03}{84\!\cdots\!49}a^{24}-\frac{26\!\cdots\!62}{10\!\cdots\!37}a^{23}+\frac{18\!\cdots\!02}{10\!\cdots\!37}a^{22}-\frac{82\!\cdots\!50}{84\!\cdots\!49}a^{21}+\frac{37\!\cdots\!83}{84\!\cdots\!49}a^{20}-\frac{21\!\cdots\!69}{10\!\cdots\!37}a^{19}+\frac{67\!\cdots\!90}{84\!\cdots\!49}a^{18}-\frac{31\!\cdots\!37}{10\!\cdots\!37}a^{17}+\frac{15\!\cdots\!86}{15\!\cdots\!91}a^{16}-\frac{26\!\cdots\!26}{84\!\cdots\!49}a^{15}+\frac{10\!\cdots\!41}{10\!\cdots\!37}a^{14}-\frac{26\!\cdots\!46}{10\!\cdots\!37}a^{13}+\frac{64\!\cdots\!34}{10\!\cdots\!37}a^{12}-\frac{13\!\cdots\!78}{10\!\cdots\!37}a^{11}+\frac{25\!\cdots\!09}{10\!\cdots\!37}a^{10}-\frac{40\!\cdots\!51}{10\!\cdots\!37}a^{9}+\frac{81\!\cdots\!71}{15\!\cdots\!91}a^{8}-\frac{64\!\cdots\!39}{10\!\cdots\!37}a^{7}+\frac{58\!\cdots\!26}{10\!\cdots\!37}a^{6}-\frac{41\!\cdots\!60}{10\!\cdots\!37}a^{5}+\frac{18\!\cdots\!68}{10\!\cdots\!37}a^{4}-\frac{94\!\cdots\!37}{10\!\cdots\!37}a^{3}+\frac{95\!\cdots\!77}{10\!\cdots\!37}a^{2}-\frac{37\!\cdots\!06}{64\!\cdots\!61}a+\frac{14\!\cdots\!74}{24\!\cdots\!39}$, $\frac{42\!\cdots\!13}{58\!\cdots\!61}a^{24}-\frac{30\!\cdots\!70}{58\!\cdots\!61}a^{23}+\frac{20\!\cdots\!81}{58\!\cdots\!61}a^{22}-\frac{92\!\cdots\!85}{44\!\cdots\!97}a^{21}+\frac{10\!\cdots\!13}{10\!\cdots\!37}a^{20}-\frac{23\!\cdots\!77}{58\!\cdots\!61}a^{19}+\frac{13\!\cdots\!62}{82\!\cdots\!23}a^{18}-\frac{32\!\cdots\!06}{58\!\cdots\!61}a^{17}+\frac{16\!\cdots\!10}{82\!\cdots\!23}a^{16}-\frac{35\!\cdots\!70}{58\!\cdots\!61}a^{15}+\frac{10\!\cdots\!53}{58\!\cdots\!61}a^{14}-\frac{25\!\cdots\!84}{58\!\cdots\!61}a^{13}+\frac{57\!\cdots\!04}{58\!\cdots\!61}a^{12}-\frac{11\!\cdots\!31}{58\!\cdots\!61}a^{11}+\frac{10\!\cdots\!94}{30\!\cdots\!19}a^{10}-\frac{40\!\cdots\!30}{82\!\cdots\!23}a^{9}+\frac{35\!\cdots\!79}{58\!\cdots\!61}a^{8}-\frac{34\!\cdots\!79}{58\!\cdots\!61}a^{7}+\frac{23\!\cdots\!22}{58\!\cdots\!61}a^{6}-\frac{11\!\cdots\!17}{58\!\cdots\!61}a^{5}+\frac{68\!\cdots\!44}{58\!\cdots\!61}a^{4}-\frac{28\!\cdots\!57}{30\!\cdots\!19}a^{3}+\frac{30\!\cdots\!27}{58\!\cdots\!61}a^{2}-\frac{56\!\cdots\!56}{34\!\cdots\!33}a+\frac{28\!\cdots\!27}{12\!\cdots\!67}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 291702564786496.44 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{12}\cdot 291702564786496.44 \cdot 5}{2\cdot\sqrt{23368375067493109808662942110693103411946589151921}}\cr\approx \mathstrut & 1.14223224229078 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^25 - 7*x^24 + 49*x^23 - 283*x^22 + 1302*x^21 - 5636*x^20 + 22809*x^19 - 80739*x^18 + 282358*x^17 - 893429*x^16 + 2621604*x^15 - 6788665*x^14 + 15933765*x^13 - 33100241*x^12 + 60008112*x^11 - 95295391*x^10 + 131154926*x^9 - 150037171*x^8 + 139788299*x^7 - 104949621*x^6 + 56076967*x^5 - 27454311*x^4 + 20655635*x^3 - 14146574*x^2 + 4203471*x - 447083)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^25 - 7*x^24 + 49*x^23 - 283*x^22 + 1302*x^21 - 5636*x^20 + 22809*x^19 - 80739*x^18 + 282358*x^17 - 893429*x^16 + 2621604*x^15 - 6788665*x^14 + 15933765*x^13 - 33100241*x^12 + 60008112*x^11 - 95295391*x^10 + 131154926*x^9 - 150037171*x^8 + 139788299*x^7 - 104949621*x^6 + 56076967*x^5 - 27454311*x^4 + 20655635*x^3 - 14146574*x^2 + 4203471*x - 447083, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^25 - 7*x^24 + 49*x^23 - 283*x^22 + 1302*x^21 - 5636*x^20 + 22809*x^19 - 80739*x^18 + 282358*x^17 - 893429*x^16 + 2621604*x^15 - 6788665*x^14 + 15933765*x^13 - 33100241*x^12 + 60008112*x^11 - 95295391*x^10 + 131154926*x^9 - 150037171*x^8 + 139788299*x^7 - 104949621*x^6 + 56076967*x^5 - 27454311*x^4 + 20655635*x^3 - 14146574*x^2 + 4203471*x - 447083);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 - 7*x^24 + 49*x^23 - 283*x^22 + 1302*x^21 - 5636*x^20 + 22809*x^19 - 80739*x^18 + 282358*x^17 - 893429*x^16 + 2621604*x^15 - 6788665*x^14 + 15933765*x^13 - 33100241*x^12 + 60008112*x^11 - 95295391*x^10 + 131154926*x^9 - 150037171*x^8 + 139788299*x^7 - 104949621*x^6 + 56076967*x^5 - 27454311*x^4 + 20655635*x^3 - 14146574*x^2 + 4203471*x - 447083);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{25}$ (as 25T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 50
The 14 conjugacy class representatives for $D_{25}$
Character table for $D_{25}$

Intermediate fields

5.1.57121.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $25$ $25$ $25$ ${\href{/padicField/7.2.0.1}{2} }^{12}{,}\,{\href{/padicField/7.1.0.1}{1} }$ R ${\href{/padicField/13.2.0.1}{2} }^{12}{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.1.0.1}{1} }^{25}$ ${\href{/padicField/19.2.0.1}{2} }^{12}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.2.0.1}{2} }^{12}{,}\,{\href{/padicField/23.1.0.1}{1} }$ $25$ $25$ ${\href{/padicField/37.2.0.1}{2} }^{12}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.2.0.1}{2} }^{12}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.2.0.1}{2} }^{12}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.2.0.1}{2} }^{12}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.2.0.1}{2} }^{12}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.2.0.1}{2} }^{12}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display Deg $25$$5$$5$$20$
\(239\) Copy content Toggle raw display $\Q_{239}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.239.2t1.a.a$1$ $ 239 $ \(\Q(\sqrt{-239}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.239.5t2.a.b$2$ $ 239 $ 5.1.57121.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.239.5t2.a.a$2$ $ 239 $ 5.1.57121.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.28919.25t4.a.g$2$ $ 11^{2} \cdot 239 $ 25.1.23368375067493109808662942110693103411946589151921.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.28919.25t4.a.h$2$ $ 11^{2} \cdot 239 $ 25.1.23368375067493109808662942110693103411946589151921.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.28919.25t4.a.i$2$ $ 11^{2} \cdot 239 $ 25.1.23368375067493109808662942110693103411946589151921.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.28919.25t4.a.f$2$ $ 11^{2} \cdot 239 $ 25.1.23368375067493109808662942110693103411946589151921.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.28919.25t4.a.e$2$ $ 11^{2} \cdot 239 $ 25.1.23368375067493109808662942110693103411946589151921.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.28919.25t4.a.b$2$ $ 11^{2} \cdot 239 $ 25.1.23368375067493109808662942110693103411946589151921.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.28919.25t4.a.d$2$ $ 11^{2} \cdot 239 $ 25.1.23368375067493109808662942110693103411946589151921.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.28919.25t4.a.c$2$ $ 11^{2} \cdot 239 $ 25.1.23368375067493109808662942110693103411946589151921.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.28919.25t4.a.a$2$ $ 11^{2} \cdot 239 $ 25.1.23368375067493109808662942110693103411946589151921.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.28919.25t4.a.j$2$ $ 11^{2} \cdot 239 $ 25.1.23368375067493109808662942110693103411946589151921.1 $D_{25}$ (as 25T4) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.