Normalized defining polynomial
\( x^{25} - 2 x^{24} - x^{23} + 8 x^{22} + 6 x^{21} - 17 x^{20} - 5 x^{19} + 32 x^{18} - 13 x^{17} - 36 x^{16} + 22 x^{15} + 58 x^{14} - 6 x^{13} - 71 x^{12} + 35 x^{10} - 24 x^{9} - 66 x^{8} + 28 x^{7} + 63 x^{6} + 92 x^{5} - 82 x^{4} - 3 x^{3} + 25 x^{2} + 16 x - 1 \)
Invariants
Degree: | $25$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(2133643557240451317422184503752801\)\(\medspace = 599^{12}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $21.54$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $599$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{29} a^{21} - \frac{9}{29} a^{20} + \frac{4}{29} a^{19} + \frac{12}{29} a^{18} + \frac{7}{29} a^{17} + \frac{11}{29} a^{16} - \frac{4}{29} a^{15} + \frac{4}{29} a^{14} - \frac{7}{29} a^{13} - \frac{14}{29} a^{12} + \frac{3}{29} a^{11} + \frac{9}{29} a^{9} - \frac{11}{29} a^{8} + \frac{7}{29} a^{7} + \frac{13}{29} a^{6} - \frac{10}{29} a^{5} + \frac{11}{29} a^{4} - \frac{9}{29} a^{3} - \frac{14}{29} a^{2} + \frac{2}{29} a + \frac{7}{29}$, $\frac{1}{319} a^{22} + \frac{4}{319} a^{21} - \frac{84}{319} a^{20} + \frac{6}{319} a^{19} - \frac{98}{319} a^{18} - \frac{101}{319} a^{17} + \frac{10}{29} a^{16} + \frac{10}{319} a^{15} - \frac{42}{319} a^{14} + \frac{127}{319} a^{13} - \frac{63}{319} a^{12} - \frac{48}{319} a^{11} + \frac{125}{319} a^{10} + \frac{135}{319} a^{9} - \frac{49}{319} a^{8} + \frac{104}{319} a^{7} + \frac{130}{319} a^{6} - \frac{148}{319} a^{5} - \frac{1}{29} a^{4} + \frac{14}{319} a^{3} - \frac{151}{319} a^{2} + \frac{3}{29} a - \frac{141}{319}$, $\frac{1}{652993} a^{23} + \frac{9}{59363} a^{22} + \frac{483}{28391} a^{21} + \frac{28370}{652993} a^{20} + \frac{35111}{652993} a^{19} + \frac{190525}{652993} a^{18} - \frac{8550}{28391} a^{17} + \frac{24133}{652993} a^{16} + \frac{187974}{652993} a^{15} - \frac{70028}{652993} a^{14} + \frac{1706}{652993} a^{13} + \frac{56953}{652993} a^{12} - \frac{227196}{652993} a^{11} - \frac{30736}{652993} a^{10} - \frac{270474}{652993} a^{9} + \frac{302690}{652993} a^{8} + \frac{2107}{59363} a^{7} + \frac{250066}{652993} a^{6} + \frac{10734}{28391} a^{5} - \frac{119743}{652993} a^{4} - \frac{34890}{652993} a^{3} - \frac{218010}{652993} a^{2} - \frac{84159}{652993} a + \frac{302184}{652993}$, $\frac{1}{41149686193745383793} a^{24} - \frac{549603224727}{5878526599106483399} a^{23} + \frac{4425522233192850}{41149686193745383793} a^{22} - \frac{692045513973704185}{41149686193745383793} a^{21} + \frac{16504015697361346683}{41149686193745383793} a^{20} - \frac{147238717079326550}{462356024648824537} a^{19} + \frac{4475479247711628259}{41149686193745383793} a^{18} - \frac{1847885909167483728}{5878526599106483399} a^{17} - \frac{242156139214007128}{3740880563067762163} a^{16} + \frac{1503138932627339372}{41149686193745383793} a^{15} + \frac{8779820669501186952}{41149686193745383793} a^{14} + \frac{18371859235671824394}{41149686193745383793} a^{13} + \frac{10761005510957681395}{41149686193745383793} a^{12} - \frac{5903764714366590829}{41149686193745383793} a^{11} - \frac{1069324996510313362}{3740880563067762163} a^{10} + \frac{7512852319340889793}{41149686193745383793} a^{9} + \frac{19810768602948602918}{41149686193745383793} a^{8} - \frac{6851766220208549499}{41149686193745383793} a^{7} - \frac{10000792882886463607}{41149686193745383793} a^{6} + \frac{16687387147620332623}{41149686193745383793} a^{5} - \frac{17613115956058858380}{41149686193745383793} a^{4} + \frac{220162729765273469}{1418954696336047717} a^{3} - \frac{408297830993109944}{41149686193745383793} a^{2} + \frac{16805752258218084792}{41149686193745383793} a - \frac{12590489922324248259}{41149686193745383793}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $12$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 3027380.0731932656 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 50 |
The 14 conjugacy class representatives for $D_{25}$ |
Character table for $D_{25}$ |
Intermediate fields
5.1.358801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $25$ | $25$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $25$ | $25$ | $25$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $25$ | $25$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{5}$ | $25$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
599 | Data not computed |