Normalized defining polynomial
\( x^{25} + 18 x^{23} - 17 x^{22} + 163 x^{21} + 778 x^{20} + 668 x^{19} + 6093 x^{18} + 8161 x^{17} - 16824 x^{16} + 24958 x^{15} + 156175 x^{14} + 317021 x^{13} + 1220510 x^{12} + 3228424 x^{11} + 5166827 x^{10} + 7607147 x^{9} + 10396892 x^{8} + 8655374 x^{7} + 3386053 x^{6} + 971637 x^{5} + 379214 x^{4} - 252700 x^{3} + 96379 x^{2} - 14488 x + 1088 \)
Invariants
Degree: | $25$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(17183405982116876392097404040231169905747048161\)\(\medspace = 11^{20}\cdot 131^{12}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $70.70$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $11, 131$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{7} - \frac{1}{8} a^{4} + \frac{1}{8} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{8} a^{5} + \frac{1}{8} a^{2}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{1}{16} a^{7} - \frac{3}{16} a^{6} - \frac{3}{16} a^{5} - \frac{3}{16} a^{4} - \frac{3}{16} a^{3} - \frac{3}{16} a^{2} - \frac{3}{8} a$, $\frac{1}{32} a^{14} + \frac{1}{16} a^{8} - \frac{3}{32} a^{2}$, $\frac{1}{32} a^{15} + \frac{1}{16} a^{9} - \frac{3}{32} a^{3}$, $\frac{1}{64} a^{16} - \frac{1}{64} a^{15} - \frac{1}{64} a^{14} - \frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{32} a^{11} + \frac{1}{16} a^{9} + \frac{1}{16} a^{8} + \frac{1}{32} a^{7} - \frac{3}{32} a^{6} - \frac{3}{32} a^{5} - \frac{9}{64} a^{4} - \frac{11}{64} a^{3} - \frac{11}{64} a^{2} - \frac{1}{8} a$, $\frac{1}{64} a^{17} - \frac{1}{64} a^{14} + \frac{1}{32} a^{11} - \frac{1}{32} a^{8} - \frac{3}{64} a^{5} + \frac{3}{64} a^{2}$, $\frac{1}{64} a^{18} - \frac{1}{64} a^{15} + \frac{1}{32} a^{12} - \frac{1}{32} a^{9} - \frac{3}{64} a^{6} + \frac{3}{64} a^{3}$, $\frac{1}{128} a^{19} - \frac{1}{128} a^{18} - \frac{1}{128} a^{17} - \frac{1}{128} a^{16} + \frac{1}{128} a^{15} + \frac{1}{128} a^{14} - \frac{1}{64} a^{13} + \frac{1}{64} a^{12} + \frac{1}{64} a^{11} + \frac{1}{64} a^{10} + \frac{3}{64} a^{9} + \frac{3}{64} a^{8} - \frac{7}{128} a^{7} - \frac{17}{128} a^{6} - \frac{17}{128} a^{5} - \frac{17}{128} a^{4} + \frac{41}{128} a^{3} - \frac{23}{128} a^{2} - \frac{1}{16} a - \frac{1}{2}$, $\frac{1}{128} a^{20} + \frac{1}{128} a^{14} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{13}{128} a^{8} - \frac{1}{16} a^{7} - \frac{3}{16} a^{6} - \frac{3}{16} a^{5} - \frac{3}{16} a^{4} + \frac{5}{16} a^{3} - \frac{21}{128} a^{2} - \frac{3}{16} a - \frac{1}{2}$, $\frac{1}{512} a^{21} - \frac{1}{512} a^{19} + \frac{1}{512} a^{18} + \frac{3}{512} a^{17} - \frac{3}{512} a^{16} - \frac{7}{512} a^{14} - \frac{3}{256} a^{13} + \frac{3}{256} a^{12} - \frac{11}{256} a^{11} + \frac{15}{256} a^{10} - \frac{35}{512} a^{9} - \frac{21}{256} a^{8} - \frac{1}{512} a^{7} + \frac{41}{512} a^{6} + \frac{3}{512} a^{5} - \frac{43}{512} a^{4} - \frac{119}{256} a^{3} + \frac{33}{512} a^{2} - \frac{1}{64} a + \frac{3}{8}$, $\frac{1}{512} a^{22} - \frac{1}{512} a^{20} + \frac{1}{512} a^{19} + \frac{3}{512} a^{18} - \frac{3}{512} a^{17} - \frac{7}{512} a^{15} - \frac{3}{256} a^{14} + \frac{3}{256} a^{13} - \frac{11}{256} a^{12} + \frac{15}{256} a^{11} + \frac{29}{512} a^{10} - \frac{21}{256} a^{9} - \frac{1}{512} a^{8} - \frac{23}{512} a^{7} + \frac{3}{512} a^{6} - \frac{43}{512} a^{5} - \frac{23}{256} a^{4} + \frac{33}{512} a^{3} - \frac{1}{64} a^{2}$, $\frac{1}{98311168} a^{23} - \frac{87863}{98311168} a^{22} + \frac{4107}{12288896} a^{21} + \frac{8619}{6144448} a^{20} - \frac{177013}{98311168} a^{19} + \frac{119809}{98311168} a^{18} + \frac{8805}{12288896} a^{17} + \frac{58391}{49155584} a^{16} + \frac{1031315}{98311168} a^{15} + \frac{505785}{98311168} a^{14} + \frac{13253}{49155584} a^{13} + \frac{2062479}{49155584} a^{12} + \frac{5088517}{98311168} a^{11} - \frac{4510119}{98311168} a^{10} - \frac{155597}{1585664} a^{9} + \frac{4544351}{49155584} a^{8} + \frac{11676163}{98311168} a^{7} + \frac{3163441}{98311168} a^{6} - \frac{4233359}{49155584} a^{5} - \frac{9707}{80848} a^{4} - \frac{34225717}{98311168} a^{3} + \frac{29441513}{98311168} a^{2} + \frac{3135647}{12288896} a - \frac{570141}{1536112}$, $\frac{1}{266562372380805553492987920756701635514090859430827252736} a^{24} + \frac{1054762804269807390187529661884604925387024529045}{266562372380805553492987920756701635514090859430827252736} a^{23} + \frac{103546041795546060622399625455800788096417852500948939}{133281186190402776746493960378350817757045429715413626368} a^{22} + \frac{22358991056657140819579762389746903700053907966739785}{66640593095201388373246980189175408878522714857706813184} a^{21} - \frac{494069392432063120432583449171311058218774546582085439}{266562372380805553492987920756701635514090859430827252736} a^{20} - \frac{362813383858702594068489155696890326702071284455900981}{266562372380805553492987920756701635514090859430827252736} a^{19} + \frac{7396684575876040484579278204263186734709163773315825}{1017413635041242570583923361666800135549965112331401728} a^{18} - \frac{310330338157811383437969090264896620427369874716626761}{66640593095201388373246980189175408878522714857706813184} a^{17} - \frac{2081744362336256383546331936308556071002782653097179609}{266562372380805553492987920756701635514090859430827252736} a^{16} + \frac{3207544678785630102715136847444775527924720733177837319}{266562372380805553492987920756701635514090859430827252736} a^{15} + \frac{407748484305696477860740188734546035365534154321953879}{133281186190402776746493960378350817757045429715413626368} a^{14} - \frac{1294692773612998967303578295340158134694028633540432275}{133281186190402776746493960378350817757045429715413626368} a^{13} + \frac{4889869022563511996432964786530743412352400478418618985}{266562372380805553492987920756701635514090859430827252736} a^{12} - \frac{11591914550166495959102522123996766137739339197826710903}{266562372380805553492987920756701635514090859430827252736} a^{11} + \frac{29955771429928449647401754408211077238796459277242455}{33320296547600694186623490094587704439261357428853406592} a^{10} - \frac{1186232937773623989579545609727646390238409917677996085}{133281186190402776746493960378350817757045429715413626368} a^{9} + \frac{1031117477335768345741009265675911062844182450820475759}{11589668364382850151869040032900071109308298236122924032} a^{8} + \frac{21355943761999485134454870663962271582416906333229630091}{266562372380805553492987920756701635514090859430827252736} a^{7} - \frac{26091416958519995327178284782188494039687655467203803}{362177136386964067245907501028127222165884319878841376} a^{6} + \frac{1230909344980294127473415189323956038864335012520123321}{7014799273179093512973366335702674618791864721863875072} a^{5} + \frac{16835221380069483202036576043209997382522839104820211963}{266562372380805553492987920756701635514090859430827252736} a^{4} - \frac{24265222199480489158765828217485964414580977310472759377}{266562372380805553492987920756701635514090859430827252736} a^{3} + \frac{6866093934654085863923467960738753415582210828505434401}{33320296547600694186623490094587704439261357428853406592} a^{2} + \frac{1546391898573609291506111370131652378230862223550240085}{4165037068450086773327936261823463054907669678606675824} a + \frac{188406420672918675975699533198258532479232916547334}{805928225319289236325065066142310962636932987346493}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
Rank: | $12$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 79672132715035.66 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 50 |
The 14 conjugacy class representatives for $D_{25}$ |
Character table for $D_{25}$ |
Intermediate fields
5.1.17161.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | $25$ | $25$ | $25$ | R | $25$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $25$ | $25$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{5}$ | $25$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
11 | Data not computed | ||||||
$131$ | $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |