Properties

Label 25.1.125...521.1
Degree $25$
Signature $[1, 12]$
Discriminant $1.259\times 10^{49}$
Root discriminant \(92.05\)
Ramified primes $11,227$
Class number $5$ (GRH)
Class group [5] (GRH)
Galois group $D_{25}$ (as 25T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^25 - 6*x^24 - 11*x^23 + 373*x^22 - 2123*x^21 + 6909*x^20 - 14504*x^19 + 11689*x^18 + 26637*x^17 - 134028*x^16 + 212769*x^15 - 8645*x^14 - 228977*x^13 + 2110377*x^12 + 2314970*x^11 + 6611519*x^10 + 25497478*x^9 + 45079364*x^8 + 81358720*x^7 + 135641936*x^6 + 134356064*x^5 + 105811904*x^4 + 91282176*x^3 + 70338560*x^2 + 75878400*x + 47071232)
 
gp: K = bnfinit(y^25 - 6*y^24 - 11*y^23 + 373*y^22 - 2123*y^21 + 6909*y^20 - 14504*y^19 + 11689*y^18 + 26637*y^17 - 134028*y^16 + 212769*y^15 - 8645*y^14 - 228977*y^13 + 2110377*y^12 + 2314970*y^11 + 6611519*y^10 + 25497478*y^9 + 45079364*y^8 + 81358720*y^7 + 135641936*y^6 + 134356064*y^5 + 105811904*y^4 + 91282176*y^3 + 70338560*y^2 + 75878400*y + 47071232, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^25 - 6*x^24 - 11*x^23 + 373*x^22 - 2123*x^21 + 6909*x^20 - 14504*x^19 + 11689*x^18 + 26637*x^17 - 134028*x^16 + 212769*x^15 - 8645*x^14 - 228977*x^13 + 2110377*x^12 + 2314970*x^11 + 6611519*x^10 + 25497478*x^9 + 45079364*x^8 + 81358720*x^7 + 135641936*x^6 + 134356064*x^5 + 105811904*x^4 + 91282176*x^3 + 70338560*x^2 + 75878400*x + 47071232);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 - 6*x^24 - 11*x^23 + 373*x^22 - 2123*x^21 + 6909*x^20 - 14504*x^19 + 11689*x^18 + 26637*x^17 - 134028*x^16 + 212769*x^15 - 8645*x^14 - 228977*x^13 + 2110377*x^12 + 2314970*x^11 + 6611519*x^10 + 25497478*x^9 + 45079364*x^8 + 81358720*x^7 + 135641936*x^6 + 134356064*x^5 + 105811904*x^4 + 91282176*x^3 + 70338560*x^2 + 75878400*x + 47071232)
 

\( x^{25} - 6 x^{24} - 11 x^{23} + 373 x^{22} - 2123 x^{21} + 6909 x^{20} - 14504 x^{19} + 11689 x^{18} + \cdots + 47071232 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $25$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(12594008714591324159904490763426952893783035367521\) \(\medspace = 11^{20}\cdot 227^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(92.05\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{4/5}227^{1/2}\approx 102.59520810120945$
Ramified primes:   \(11\), \(227\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{3}$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{9}-\frac{1}{8}a^{4}+\frac{1}{8}a^{3}$, $\frac{1}{16}a^{11}-\frac{1}{16}a^{10}-\frac{1}{8}a^{8}-\frac{1}{8}a^{7}-\frac{3}{16}a^{5}-\frac{1}{16}a^{4}$, $\frac{1}{16}a^{12}-\frac{1}{16}a^{10}-\frac{1}{8}a^{9}-\frac{1}{8}a^{7}+\frac{1}{16}a^{6}-\frac{1}{16}a^{4}+\frac{1}{4}a^{3}$, $\frac{1}{16}a^{13}-\frac{1}{16}a^{10}-\frac{1}{8}a^{9}-\frac{1}{16}a^{7}-\frac{1}{4}a^{5}+\frac{1}{16}a^{4}+\frac{1}{8}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{160}a^{14}+\frac{1}{160}a^{13}+\frac{1}{40}a^{12}-\frac{3}{160}a^{11}+\frac{1}{160}a^{10}+\frac{3}{40}a^{9}+\frac{7}{160}a^{8}-\frac{17}{160}a^{7}-\frac{1}{8}a^{6}+\frac{19}{160}a^{5}+\frac{7}{160}a^{4}+\frac{1}{40}a^{3}+\frac{1}{4}a^{2}-\frac{1}{20}a+\frac{2}{5}$, $\frac{1}{160}a^{15}+\frac{3}{160}a^{13}+\frac{3}{160}a^{12}+\frac{1}{40}a^{11}+\frac{1}{160}a^{10}+\frac{3}{32}a^{9}+\frac{1}{10}a^{8}+\frac{17}{160}a^{7}+\frac{9}{160}a^{6}-\frac{3}{40}a^{5}+\frac{27}{160}a^{4}-\frac{1}{40}a^{3}+\frac{9}{20}a^{2}+\frac{9}{20}a-\frac{2}{5}$, $\frac{1}{320}a^{16}-\frac{1}{320}a^{14}-\frac{1}{320}a^{13}+\frac{1}{40}a^{12}-\frac{7}{320}a^{11}+\frac{11}{320}a^{10}-\frac{1}{10}a^{9}+\frac{29}{320}a^{8}-\frac{3}{320}a^{7}+\frac{1}{40}a^{6}-\frac{69}{320}a^{5}+\frac{3}{20}a^{4}-\frac{9}{20}a^{3}+\frac{19}{40}a^{2}+\frac{2}{5}a+\frac{1}{5}$, $\frac{1}{320}a^{17}-\frac{1}{320}a^{15}-\frac{1}{320}a^{14}+\frac{1}{40}a^{13}-\frac{7}{320}a^{12}-\frac{9}{320}a^{11}-\frac{3}{80}a^{10}+\frac{29}{320}a^{9}+\frac{37}{320}a^{8}-\frac{1}{10}a^{7}+\frac{11}{320}a^{6}-\frac{13}{80}a^{5}-\frac{11}{80}a^{4}-\frac{11}{40}a^{3}-\frac{1}{10}a^{2}-\frac{3}{10}a$, $\frac{1}{1280}a^{18}+\frac{1}{1280}a^{17}+\frac{1}{1280}a^{16}+\frac{1}{640}a^{15}+\frac{1}{1280}a^{14}+\frac{27}{1280}a^{13}-\frac{3}{160}a^{12}+\frac{13}{1280}a^{11}-\frac{21}{1280}a^{10}+\frac{67}{640}a^{9}+\frac{139}{1280}a^{8}+\frac{9}{1280}a^{7}-\frac{9}{1280}a^{6}-\frac{89}{640}a^{5}+\frac{23}{160}a^{4}-\frac{1}{32}a^{3}-\frac{31}{80}a^{2}+\frac{1}{4}a+\frac{1}{5}$, $\frac{1}{1280}a^{19}+\frac{1}{1280}a^{16}-\frac{1}{1280}a^{15}+\frac{1}{640}a^{14}+\frac{1}{256}a^{13}+\frac{21}{1280}a^{12}+\frac{19}{640}a^{11}-\frac{29}{1280}a^{10}+\frac{37}{1280}a^{9}+\frac{11}{640}a^{8}+\frac{15}{128}a^{7}+\frac{71}{1280}a^{6}-\frac{47}{640}a^{5}+\frac{31}{160}a^{4}+\frac{31}{160}a^{3}-\frac{29}{80}a^{2}-\frac{2}{5}a-\frac{2}{5}$, $\frac{1}{33280}a^{20}+\frac{1}{3328}a^{19}+\frac{1}{3328}a^{18}+\frac{3}{33280}a^{17}+\frac{27}{33280}a^{16}+\frac{3}{8320}a^{15}-\frac{1}{6656}a^{14}+\frac{73}{6656}a^{13}-\frac{77}{4160}a^{12}+\frac{165}{6656}a^{11}+\frac{2073}{33280}a^{10}+\frac{681}{8320}a^{9}+\frac{181}{4160}a^{8}-\frac{1243}{33280}a^{7}-\frac{125}{3328}a^{6}-\frac{379}{4160}a^{5}-\frac{539}{4160}a^{4}-\frac{179}{416}a^{3}+\frac{29}{130}a^{2}+\frac{17}{65}a-\frac{1}{5}$, $\frac{1}{1131520}a^{21}-\frac{3}{1131520}a^{20}-\frac{69}{282880}a^{19}-\frac{231}{1131520}a^{18}+\frac{15}{56576}a^{17}-\frac{599}{1131520}a^{16}+\frac{623}{226304}a^{15}-\frac{165}{113152}a^{14}-\frac{16437}{1131520}a^{13}-\frac{19819}{1131520}a^{12}+\frac{801}{282880}a^{11}-\frac{67853}{1131520}a^{10}-\frac{9413}{141440}a^{9}+\frac{729}{226304}a^{8}-\frac{9207}{226304}a^{7}+\frac{3511}{113152}a^{6}+\frac{12331}{141440}a^{5}+\frac{3581}{28288}a^{4}-\frac{3971}{14144}a^{3}+\frac{3529}{17680}a^{2}+\frac{15}{34}a+\frac{2}{5}$, $\frac{1}{2263040}a^{22}-\frac{1}{2263040}a^{21}-\frac{1}{226304}a^{20}-\frac{11}{34816}a^{19}-\frac{47}{1131520}a^{18}+\frac{1701}{2263040}a^{17}-\frac{623}{452608}a^{16}-\frac{677}{282880}a^{15}+\frac{163}{133120}a^{14}+\frac{831}{452608}a^{13}+\frac{13369}{1131520}a^{12}+\frac{227}{174080}a^{11}-\frac{1457}{87040}a^{10}+\frac{136937}{2263040}a^{9}+\frac{80187}{2263040}a^{8}-\frac{4769}{113152}a^{7}-\frac{3937}{43520}a^{6}+\frac{12851}{282880}a^{5}+\frac{2071}{35360}a^{4}+\frac{5893}{14144}a^{3}-\frac{5}{16}a^{2}-\frac{409}{884}a+\frac{1}{5}$, $\frac{1}{5888905318400}a^{23}-\frac{3361}{79579801600}a^{22}+\frac{175391}{452992716800}a^{21}-\frac{83656509}{5888905318400}a^{20}-\frac{28253707}{235556212736}a^{19}+\frac{1663711991}{5888905318400}a^{18}+\frac{441579711}{736113164800}a^{17}+\frac{3364323687}{5888905318400}a^{16}+\frac{15881553247}{5888905318400}a^{15}+\frac{5965315}{29444526592}a^{14}-\frac{104090684557}{5888905318400}a^{13}-\frac{60131789599}{5888905318400}a^{12}+\frac{100165439431}{5888905318400}a^{11}-\frac{17016933613}{452992716800}a^{10}-\frac{202683692863}{2944452659200}a^{9}+\frac{699687738749}{5888905318400}a^{8}-\frac{48250215379}{1472226329600}a^{7}+\frac{1043706611}{17320309760}a^{6}-\frac{159530451189}{736113164800}a^{5}+\frac{2209749501}{11501768200}a^{4}-\frac{4438848533}{184028291200}a^{3}-\frac{5859437349}{23003536400}a^{2}-\frac{67571327}{442375700}a+\frac{294901}{1000850}$, $\frac{1}{35\!\cdots\!00}a^{24}-\frac{13\!\cdots\!53}{17\!\cdots\!00}a^{23}+\frac{58\!\cdots\!61}{35\!\cdots\!00}a^{22}+\frac{15\!\cdots\!13}{70\!\cdots\!20}a^{21}-\frac{41\!\cdots\!47}{35\!\cdots\!00}a^{20}-\frac{12\!\cdots\!39}{35\!\cdots\!00}a^{19}-\frac{14\!\cdots\!51}{88\!\cdots\!00}a^{18}-\frac{17\!\cdots\!43}{27\!\cdots\!00}a^{17}-\frac{21\!\cdots\!87}{35\!\cdots\!00}a^{16}+\frac{46\!\cdots\!71}{22\!\cdots\!00}a^{15}+\frac{14\!\cdots\!93}{35\!\cdots\!00}a^{14}+\frac{12\!\cdots\!83}{70\!\cdots\!20}a^{13}+\frac{10\!\cdots\!79}{35\!\cdots\!00}a^{12}-\frac{96\!\cdots\!91}{35\!\cdots\!00}a^{11}-\frac{76\!\cdots\!37}{47\!\cdots\!00}a^{10}-\frac{19\!\cdots\!63}{15\!\cdots\!00}a^{9}-\frac{22\!\cdots\!67}{17\!\cdots\!00}a^{8}+\frac{10\!\cdots\!63}{88\!\cdots\!00}a^{7}-\frac{15\!\cdots\!47}{22\!\cdots\!00}a^{6}+\frac{53\!\cdots\!61}{22\!\cdots\!00}a^{5}-\frac{92\!\cdots\!47}{12\!\cdots\!80}a^{4}-\frac{18\!\cdots\!63}{55\!\cdots\!00}a^{3}+\frac{22\!\cdots\!67}{68\!\cdots\!00}a^{2}-\frac{82\!\cdots\!84}{16\!\cdots\!25}a-\frac{16\!\cdots\!11}{55\!\cdots\!00}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $5$

Class group and class number

$C_{5}$, which has order $5$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{75\!\cdots\!63}{10\!\cdots\!40}a^{24}-\frac{13\!\cdots\!51}{27\!\cdots\!00}a^{23}-\frac{57\!\cdots\!37}{54\!\cdots\!00}a^{22}+\frac{14\!\cdots\!99}{54\!\cdots\!00}a^{21}-\frac{98\!\cdots\!97}{54\!\cdots\!00}a^{20}+\frac{77\!\cdots\!87}{10\!\cdots\!40}a^{19}-\frac{26\!\cdots\!93}{13\!\cdots\!00}a^{18}+\frac{17\!\cdots\!19}{54\!\cdots\!00}a^{17}-\frac{10\!\cdots\!13}{41\!\cdots\!00}a^{16}-\frac{13\!\cdots\!69}{21\!\cdots\!00}a^{15}+\frac{24\!\cdots\!11}{10\!\cdots\!40}a^{14}-\frac{16\!\cdots\!11}{54\!\cdots\!00}a^{13}+\frac{12\!\cdots\!93}{54\!\cdots\!00}a^{12}+\frac{63\!\cdots\!83}{54\!\cdots\!00}a^{11}+\frac{28\!\cdots\!69}{27\!\cdots\!00}a^{10}+\frac{10\!\cdots\!19}{24\!\cdots\!00}a^{9}+\frac{32\!\cdots\!51}{27\!\cdots\!00}a^{8}+\frac{12\!\cdots\!89}{80\!\cdots\!00}a^{7}+\frac{23\!\cdots\!67}{68\!\cdots\!40}a^{6}+\frac{15\!\cdots\!99}{34\!\cdots\!00}a^{5}+\frac{51\!\cdots\!23}{17\!\cdots\!00}a^{4}+\frac{25\!\cdots\!63}{85\!\cdots\!00}a^{3}+\frac{21\!\cdots\!29}{10\!\cdots\!00}a^{2}+\frac{54\!\cdots\!54}{25\!\cdots\!75}a+\frac{10\!\cdots\!79}{46\!\cdots\!00}$, $\frac{39\!\cdots\!91}{10\!\cdots\!40}a^{24}-\frac{69\!\cdots\!97}{27\!\cdots\!00}a^{23}-\frac{77\!\cdots\!49}{54\!\cdots\!00}a^{22}+\frac{75\!\cdots\!23}{54\!\cdots\!00}a^{21}-\frac{49\!\cdots\!29}{54\!\cdots\!00}a^{20}+\frac{37\!\cdots\!87}{10\!\cdots\!40}a^{19}-\frac{29\!\cdots\!69}{34\!\cdots\!00}a^{18}+\frac{72\!\cdots\!03}{54\!\cdots\!00}a^{17}-\frac{21\!\cdots\!33}{54\!\cdots\!00}a^{16}-\frac{16\!\cdots\!71}{36\!\cdots\!00}a^{15}+\frac{26\!\cdots\!39}{21\!\cdots\!48}a^{14}-\frac{70\!\cdots\!47}{54\!\cdots\!00}a^{13}+\frac{21\!\cdots\!97}{41\!\cdots\!00}a^{12}+\frac{38\!\cdots\!91}{54\!\cdots\!00}a^{11}+\frac{33\!\cdots\!43}{27\!\cdots\!00}a^{10}+\frac{57\!\cdots\!83}{24\!\cdots\!00}a^{9}+\frac{18\!\cdots\!77}{27\!\cdots\!00}a^{8}+\frac{13\!\cdots\!81}{13\!\cdots\!00}a^{7}+\frac{34\!\cdots\!99}{17\!\cdots\!60}a^{6}+\frac{99\!\cdots\!93}{34\!\cdots\!00}a^{5}+\frac{26\!\cdots\!67}{13\!\cdots\!00}a^{4}+\frac{34\!\cdots\!81}{17\!\cdots\!00}a^{3}+\frac{82\!\cdots\!89}{62\!\cdots\!00}a^{2}+\frac{28\!\cdots\!88}{25\!\cdots\!75}a+\frac{68\!\cdots\!13}{46\!\cdots\!00}$, $\frac{88\!\cdots\!91}{35\!\cdots\!00}a^{24}+\frac{76\!\cdots\!99}{35\!\cdots\!60}a^{23}-\frac{93\!\cdots\!33}{35\!\cdots\!00}a^{22}+\frac{19\!\cdots\!03}{35\!\cdots\!00}a^{21}+\frac{32\!\cdots\!39}{35\!\cdots\!00}a^{20}-\frac{23\!\cdots\!69}{35\!\cdots\!00}a^{19}+\frac{94\!\cdots\!99}{44\!\cdots\!00}a^{18}-\frac{14\!\cdots\!01}{35\!\cdots\!00}a^{17}+\frac{81\!\cdots\!03}{54\!\cdots\!40}a^{16}+\frac{28\!\cdots\!51}{23\!\cdots\!00}a^{15}-\frac{13\!\cdots\!37}{35\!\cdots\!00}a^{14}+\frac{13\!\cdots\!53}{35\!\cdots\!00}a^{13}+\frac{57\!\cdots\!93}{70\!\cdots\!20}a^{12}-\frac{54\!\cdots\!73}{70\!\cdots\!20}a^{11}+\frac{79\!\cdots\!39}{17\!\cdots\!00}a^{10}+\frac{37\!\cdots\!59}{31\!\cdots\!40}a^{9}+\frac{12\!\cdots\!29}{70\!\cdots\!52}a^{8}+\frac{52\!\cdots\!89}{88\!\cdots\!00}a^{7}+\frac{10\!\cdots\!73}{86\!\cdots\!00}a^{6}+\frac{29\!\cdots\!49}{22\!\cdots\!00}a^{5}+\frac{13\!\cdots\!71}{11\!\cdots\!00}a^{4}+\frac{16\!\cdots\!09}{14\!\cdots\!00}a^{3}+\frac{13\!\cdots\!21}{13\!\cdots\!60}a^{2}+\frac{31\!\cdots\!33}{33\!\cdots\!50}a+\frac{14\!\cdots\!37}{29\!\cdots\!00}$, $\frac{27\!\cdots\!09}{35\!\cdots\!00}a^{24}-\frac{69\!\cdots\!83}{13\!\cdots\!00}a^{23}-\frac{44\!\cdots\!51}{70\!\cdots\!20}a^{22}+\frac{10\!\cdots\!53}{35\!\cdots\!00}a^{21}-\frac{64\!\cdots\!07}{35\!\cdots\!00}a^{20}+\frac{22\!\cdots\!29}{35\!\cdots\!00}a^{19}-\frac{96\!\cdots\!73}{68\!\cdots\!80}a^{18}+\frac{51\!\cdots\!97}{35\!\cdots\!00}a^{17}+\frac{53\!\cdots\!09}{35\!\cdots\!00}a^{16}-\frac{94\!\cdots\!61}{88\!\cdots\!00}a^{15}+\frac{53\!\cdots\!09}{27\!\cdots\!00}a^{14}-\frac{22\!\cdots\!77}{35\!\cdots\!00}a^{13}-\frac{48\!\cdots\!53}{35\!\cdots\!00}a^{12}+\frac{52\!\cdots\!57}{35\!\cdots\!00}a^{11}+\frac{24\!\cdots\!77}{17\!\cdots\!00}a^{10}+\frac{58\!\cdots\!61}{15\!\cdots\!00}a^{9}+\frac{27\!\cdots\!19}{17\!\cdots\!00}a^{8}+\frac{23\!\cdots\!43}{88\!\cdots\!00}a^{7}+\frac{41\!\cdots\!81}{11\!\cdots\!00}a^{6}+\frac{14\!\cdots\!07}{22\!\cdots\!00}a^{5}+\frac{51\!\cdots\!81}{11\!\cdots\!00}a^{4}+\frac{11\!\cdots\!99}{55\!\cdots\!00}a^{3}+\frac{15\!\cdots\!01}{68\!\cdots\!00}a^{2}+\frac{13\!\cdots\!69}{33\!\cdots\!50}a+\frac{33\!\cdots\!39}{29\!\cdots\!00}$, $\frac{21\!\cdots\!87}{70\!\cdots\!52}a^{24}-\frac{19\!\cdots\!63}{88\!\cdots\!00}a^{23}-\frac{62\!\cdots\!53}{10\!\cdots\!00}a^{22}+\frac{20\!\cdots\!27}{17\!\cdots\!00}a^{21}-\frac{38\!\cdots\!93}{47\!\cdots\!00}a^{20}+\frac{65\!\cdots\!31}{20\!\cdots\!80}a^{19}-\frac{37\!\cdots\!39}{44\!\cdots\!00}a^{18}+\frac{24\!\cdots\!87}{17\!\cdots\!00}a^{17}-\frac{16\!\cdots\!97}{17\!\cdots\!00}a^{16}-\frac{65\!\cdots\!59}{22\!\cdots\!00}a^{15}+\frac{72\!\cdots\!43}{70\!\cdots\!52}a^{14}-\frac{22\!\cdots\!63}{17\!\cdots\!00}a^{13}+\frac{16\!\cdots\!69}{17\!\cdots\!00}a^{12}+\frac{93\!\cdots\!79}{17\!\cdots\!00}a^{11}+\frac{52\!\cdots\!97}{88\!\cdots\!00}a^{10}+\frac{15\!\cdots\!47}{79\!\cdots\!00}a^{9}+\frac{47\!\cdots\!83}{88\!\cdots\!00}a^{8}+\frac{31\!\cdots\!69}{44\!\cdots\!00}a^{7}+\frac{15\!\cdots\!23}{99\!\cdots\!60}a^{6}+\frac{23\!\cdots\!27}{11\!\cdots\!00}a^{5}+\frac{78\!\cdots\!19}{55\!\cdots\!00}a^{4}+\frac{39\!\cdots\!39}{27\!\cdots\!00}a^{3}+\frac{32\!\cdots\!77}{34\!\cdots\!00}a^{2}+\frac{64\!\cdots\!71}{66\!\cdots\!00}a+\frac{16\!\cdots\!07}{14\!\cdots\!50}$, $\frac{90\!\cdots\!93}{35\!\cdots\!00}a^{24}-\frac{35\!\cdots\!29}{17\!\cdots\!00}a^{23}+\frac{82\!\cdots\!13}{35\!\cdots\!00}a^{22}+\frac{69\!\cdots\!81}{70\!\cdots\!20}a^{21}-\frac{25\!\cdots\!11}{35\!\cdots\!00}a^{20}+\frac{10\!\cdots\!53}{35\!\cdots\!00}a^{19}-\frac{68\!\cdots\!13}{88\!\cdots\!00}a^{18}+\frac{45\!\cdots\!33}{35\!\cdots\!00}a^{17}-\frac{23\!\cdots\!91}{35\!\cdots\!00}a^{16}-\frac{15\!\cdots\!49}{44\!\cdots\!00}a^{15}+\frac{38\!\cdots\!89}{35\!\cdots\!00}a^{14}-\frac{93\!\cdots\!69}{70\!\cdots\!20}a^{13}+\frac{13\!\cdots\!47}{35\!\cdots\!00}a^{12}+\frac{19\!\cdots\!17}{35\!\cdots\!00}a^{11}-\frac{48\!\cdots\!17}{17\!\cdots\!00}a^{10}+\frac{20\!\cdots\!21}{15\!\cdots\!00}a^{9}+\frac{74\!\cdots\!09}{17\!\cdots\!00}a^{8}+\frac{14\!\cdots\!87}{51\!\cdots\!00}a^{7}+\frac{14\!\cdots\!53}{16\!\cdots\!00}a^{6}+\frac{27\!\cdots\!53}{22\!\cdots\!00}a^{5}-\frac{20\!\cdots\!15}{44\!\cdots\!72}a^{4}+\frac{17\!\cdots\!21}{55\!\cdots\!00}a^{3}+\frac{17\!\cdots\!83}{18\!\cdots\!00}a^{2}+\frac{53\!\cdots\!91}{38\!\cdots\!00}a+\frac{29\!\cdots\!17}{29\!\cdots\!00}$, $\frac{20\!\cdots\!93}{35\!\cdots\!00}a^{24}-\frac{78\!\cdots\!71}{17\!\cdots\!00}a^{23}+\frac{43\!\cdots\!89}{35\!\cdots\!00}a^{22}+\frac{75\!\cdots\!93}{35\!\cdots\!00}a^{21}-\frac{30\!\cdots\!63}{19\!\cdots\!60}a^{20}+\frac{23\!\cdots\!73}{35\!\cdots\!00}a^{19}-\frac{21\!\cdots\!23}{11\!\cdots\!00}a^{18}+\frac{13\!\cdots\!81}{35\!\cdots\!00}a^{17}-\frac{15\!\cdots\!99}{35\!\cdots\!00}a^{16}-\frac{56\!\cdots\!21}{35\!\cdots\!76}a^{15}+\frac{63\!\cdots\!49}{35\!\cdots\!00}a^{14}-\frac{12\!\cdots\!37}{35\!\cdots\!00}a^{13}+\frac{16\!\cdots\!83}{35\!\cdots\!00}a^{12}+\frac{16\!\cdots\!53}{35\!\cdots\!00}a^{11}+\frac{38\!\cdots\!21}{17\!\cdots\!00}a^{10}+\frac{57\!\cdots\!49}{15\!\cdots\!00}a^{9}+\frac{10\!\cdots\!67}{13\!\cdots\!00}a^{8}+\frac{20\!\cdots\!11}{17\!\cdots\!80}a^{7}+\frac{12\!\cdots\!81}{55\!\cdots\!00}a^{6}+\frac{65\!\cdots\!11}{22\!\cdots\!00}a^{5}+\frac{16\!\cdots\!61}{11\!\cdots\!00}a^{4}+\frac{80\!\cdots\!67}{55\!\cdots\!00}a^{3}+\frac{76\!\cdots\!99}{68\!\cdots\!00}a^{2}+\frac{22\!\cdots\!66}{16\!\cdots\!25}a+\frac{11\!\cdots\!71}{59\!\cdots\!40}$, $\frac{46\!\cdots\!87}{70\!\cdots\!20}a^{24}-\frac{92\!\cdots\!13}{17\!\cdots\!00}a^{23}+\frac{66\!\cdots\!39}{35\!\cdots\!00}a^{22}+\frac{88\!\cdots\!67}{35\!\cdots\!00}a^{21}-\frac{66\!\cdots\!41}{35\!\cdots\!00}a^{20}+\frac{55\!\cdots\!59}{70\!\cdots\!20}a^{19}-\frac{74\!\cdots\!89}{33\!\cdots\!00}a^{18}+\frac{14\!\cdots\!47}{35\!\cdots\!00}a^{17}-\frac{11\!\cdots\!97}{35\!\cdots\!00}a^{16}-\frac{53\!\cdots\!73}{88\!\cdots\!00}a^{15}+\frac{49\!\cdots\!47}{19\!\cdots\!60}a^{14}-\frac{12\!\cdots\!63}{35\!\cdots\!00}a^{13}+\frac{67\!\cdots\!69}{35\!\cdots\!00}a^{12}+\frac{43\!\cdots\!19}{35\!\cdots\!00}a^{11}-\frac{79\!\cdots\!13}{17\!\cdots\!00}a^{10}+\frac{43\!\cdots\!79}{12\!\cdots\!00}a^{9}+\frac{18\!\cdots\!93}{17\!\cdots\!00}a^{8}+\frac{40\!\cdots\!89}{39\!\cdots\!00}a^{7}+\frac{28\!\cdots\!27}{11\!\cdots\!80}a^{6}+\frac{65\!\cdots\!09}{16\!\cdots\!00}a^{5}+\frac{27\!\cdots\!59}{11\!\cdots\!00}a^{4}+\frac{14\!\cdots\!09}{55\!\cdots\!00}a^{3}+\frac{11\!\cdots\!07}{68\!\cdots\!00}a^{2}+\frac{97\!\cdots\!83}{66\!\cdots\!00}a+\frac{68\!\cdots\!37}{29\!\cdots\!00}$, $\frac{31\!\cdots\!97}{11\!\cdots\!00}a^{24}-\frac{88\!\cdots\!19}{44\!\cdots\!00}a^{23}-\frac{84\!\cdots\!69}{84\!\cdots\!00}a^{22}+\frac{47\!\cdots\!87}{44\!\cdots\!00}a^{21}-\frac{31\!\cdots\!67}{44\!\cdots\!00}a^{20}+\frac{12\!\cdots\!83}{44\!\cdots\!00}a^{19}-\frac{30\!\cdots\!63}{44\!\cdots\!00}a^{18}+\frac{94\!\cdots\!47}{88\!\cdots\!44}a^{17}-\frac{15\!\cdots\!33}{44\!\cdots\!00}a^{16}-\frac{15\!\cdots\!39}{44\!\cdots\!00}a^{15}+\frac{58\!\cdots\!31}{59\!\cdots\!00}a^{14}-\frac{47\!\cdots\!93}{44\!\cdots\!00}a^{13}+\frac{20\!\cdots\!51}{44\!\cdots\!00}a^{12}+\frac{18\!\cdots\!77}{33\!\cdots\!00}a^{11}+\frac{55\!\cdots\!49}{88\!\cdots\!40}a^{10}+\frac{22\!\cdots\!83}{12\!\cdots\!00}a^{9}+\frac{23\!\cdots\!89}{44\!\cdots\!00}a^{8}+\frac{15\!\cdots\!21}{22\!\cdots\!00}a^{7}+\frac{21\!\cdots\!17}{13\!\cdots\!00}a^{6}+\frac{24\!\cdots\!21}{11\!\cdots\!80}a^{5}+\frac{40\!\cdots\!63}{27\!\cdots\!00}a^{4}+\frac{19\!\cdots\!77}{13\!\cdots\!60}a^{3}+\frac{13\!\cdots\!57}{13\!\cdots\!00}a^{2}+\frac{57\!\cdots\!01}{66\!\cdots\!70}a+\frac{93\!\cdots\!13}{74\!\cdots\!25}$, $\frac{17\!\cdots\!61}{13\!\cdots\!00}a^{24}-\frac{42\!\cdots\!83}{44\!\cdots\!00}a^{23}-\frac{38\!\cdots\!71}{17\!\cdots\!00}a^{22}+\frac{51\!\cdots\!27}{10\!\cdots\!00}a^{21}-\frac{24\!\cdots\!61}{70\!\cdots\!52}a^{20}+\frac{23\!\cdots\!63}{17\!\cdots\!00}a^{19}-\frac{32\!\cdots\!33}{88\!\cdots\!00}a^{18}+\frac{10\!\cdots\!81}{17\!\cdots\!00}a^{17}-\frac{77\!\cdots\!49}{17\!\cdots\!00}a^{16}-\frac{21\!\cdots\!39}{17\!\cdots\!80}a^{15}+\frac{77\!\cdots\!69}{17\!\cdots\!00}a^{14}-\frac{10\!\cdots\!67}{17\!\cdots\!00}a^{13}+\frac{76\!\cdots\!53}{17\!\cdots\!00}a^{12}+\frac{39\!\cdots\!23}{17\!\cdots\!00}a^{11}+\frac{68\!\cdots\!47}{42\!\cdots\!00}a^{10}+\frac{67\!\cdots\!49}{79\!\cdots\!00}a^{9}+\frac{59\!\cdots\!89}{25\!\cdots\!00}a^{8}+\frac{26\!\cdots\!21}{88\!\cdots\!40}a^{7}+\frac{15\!\cdots\!53}{22\!\cdots\!00}a^{6}+\frac{25\!\cdots\!89}{27\!\cdots\!00}a^{5}+\frac{33\!\cdots\!81}{55\!\cdots\!00}a^{4}+\frac{43\!\cdots\!93}{68\!\cdots\!00}a^{3}+\frac{34\!\cdots\!41}{86\!\cdots\!00}a^{2}+\frac{27\!\cdots\!13}{66\!\cdots\!00}a+\frac{14\!\cdots\!19}{29\!\cdots\!97}$, $\frac{19\!\cdots\!03}{17\!\cdots\!00}a^{24}-\frac{68\!\cdots\!23}{88\!\cdots\!00}a^{23}-\frac{82\!\cdots\!61}{35\!\cdots\!60}a^{22}+\frac{71\!\cdots\!91}{17\!\cdots\!00}a^{21}-\frac{49\!\cdots\!29}{17\!\cdots\!00}a^{20}+\frac{19\!\cdots\!03}{17\!\cdots\!00}a^{19}-\frac{25\!\cdots\!23}{88\!\cdots\!40}a^{18}+\frac{84\!\cdots\!99}{17\!\cdots\!00}a^{17}-\frac{52\!\cdots\!17}{17\!\cdots\!00}a^{16}-\frac{60\!\cdots\!19}{55\!\cdots\!00}a^{15}+\frac{64\!\cdots\!39}{17\!\cdots\!00}a^{14}-\frac{80\!\cdots\!39}{17\!\cdots\!00}a^{13}+\frac{54\!\cdots\!49}{17\!\cdots\!00}a^{12}+\frac{33\!\cdots\!19}{17\!\cdots\!00}a^{11}+\frac{14\!\cdots\!09}{88\!\cdots\!00}a^{10}+\frac{55\!\cdots\!67}{79\!\cdots\!00}a^{9}+\frac{16\!\cdots\!93}{88\!\cdots\!00}a^{8}+\frac{11\!\cdots\!71}{44\!\cdots\!00}a^{7}+\frac{62\!\cdots\!59}{11\!\cdots\!00}a^{6}+\frac{85\!\cdots\!89}{11\!\cdots\!00}a^{5}+\frac{28\!\cdots\!37}{55\!\cdots\!00}a^{4}+\frac{14\!\cdots\!43}{27\!\cdots\!00}a^{3}+\frac{12\!\cdots\!17}{34\!\cdots\!00}a^{2}+\frac{55\!\cdots\!18}{16\!\cdots\!25}a+\frac{62\!\cdots\!93}{14\!\cdots\!50}$, $\frac{22\!\cdots\!59}{70\!\cdots\!20}a^{24}-\frac{15\!\cdots\!51}{70\!\cdots\!52}a^{23}-\frac{75\!\cdots\!37}{70\!\cdots\!20}a^{22}+\frac{83\!\cdots\!07}{70\!\cdots\!20}a^{21}-\frac{56\!\cdots\!13}{70\!\cdots\!20}a^{20}+\frac{16\!\cdots\!43}{54\!\cdots\!40}a^{19}-\frac{27\!\cdots\!03}{35\!\cdots\!76}a^{18}+\frac{17\!\cdots\!23}{14\!\cdots\!04}a^{17}-\frac{62\!\cdots\!53}{14\!\cdots\!04}a^{16}-\frac{66\!\cdots\!39}{17\!\cdots\!88}a^{15}+\frac{76\!\cdots\!47}{70\!\cdots\!20}a^{14}-\frac{85\!\cdots\!67}{70\!\cdots\!20}a^{13}+\frac{41\!\cdots\!81}{70\!\cdots\!20}a^{12}+\frac{42\!\cdots\!23}{70\!\cdots\!20}a^{11}+\frac{49\!\cdots\!97}{70\!\cdots\!52}a^{10}+\frac{63\!\cdots\!79}{31\!\cdots\!40}a^{9}+\frac{41\!\cdots\!15}{70\!\cdots\!52}a^{8}+\frac{13\!\cdots\!01}{17\!\cdots\!80}a^{7}+\frac{15\!\cdots\!27}{88\!\cdots\!44}a^{6}+\frac{10\!\cdots\!31}{44\!\cdots\!20}a^{5}+\frac{36\!\cdots\!67}{22\!\cdots\!60}a^{4}+\frac{36\!\cdots\!91}{22\!\cdots\!36}a^{3}+\frac{15\!\cdots\!09}{13\!\cdots\!60}a^{2}+\frac{31\!\cdots\!44}{33\!\cdots\!85}a+\frac{84\!\cdots\!99}{59\!\cdots\!40}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3887937729197100.0 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{12}\cdot 3887937729197100.0 \cdot 5}{2\cdot\sqrt{12594008714591324159904490763426952893783035367521}}\cr\approx \mathstrut & 20.7379455745518 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^25 - 6*x^24 - 11*x^23 + 373*x^22 - 2123*x^21 + 6909*x^20 - 14504*x^19 + 11689*x^18 + 26637*x^17 - 134028*x^16 + 212769*x^15 - 8645*x^14 - 228977*x^13 + 2110377*x^12 + 2314970*x^11 + 6611519*x^10 + 25497478*x^9 + 45079364*x^8 + 81358720*x^7 + 135641936*x^6 + 134356064*x^5 + 105811904*x^4 + 91282176*x^3 + 70338560*x^2 + 75878400*x + 47071232)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^25 - 6*x^24 - 11*x^23 + 373*x^22 - 2123*x^21 + 6909*x^20 - 14504*x^19 + 11689*x^18 + 26637*x^17 - 134028*x^16 + 212769*x^15 - 8645*x^14 - 228977*x^13 + 2110377*x^12 + 2314970*x^11 + 6611519*x^10 + 25497478*x^9 + 45079364*x^8 + 81358720*x^7 + 135641936*x^6 + 134356064*x^5 + 105811904*x^4 + 91282176*x^3 + 70338560*x^2 + 75878400*x + 47071232, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^25 - 6*x^24 - 11*x^23 + 373*x^22 - 2123*x^21 + 6909*x^20 - 14504*x^19 + 11689*x^18 + 26637*x^17 - 134028*x^16 + 212769*x^15 - 8645*x^14 - 228977*x^13 + 2110377*x^12 + 2314970*x^11 + 6611519*x^10 + 25497478*x^9 + 45079364*x^8 + 81358720*x^7 + 135641936*x^6 + 134356064*x^5 + 105811904*x^4 + 91282176*x^3 + 70338560*x^2 + 75878400*x + 47071232);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 - 6*x^24 - 11*x^23 + 373*x^22 - 2123*x^21 + 6909*x^20 - 14504*x^19 + 11689*x^18 + 26637*x^17 - 134028*x^16 + 212769*x^15 - 8645*x^14 - 228977*x^13 + 2110377*x^12 + 2314970*x^11 + 6611519*x^10 + 25497478*x^9 + 45079364*x^8 + 81358720*x^7 + 135641936*x^6 + 134356064*x^5 + 105811904*x^4 + 91282176*x^3 + 70338560*x^2 + 75878400*x + 47071232);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{25}$ (as 25T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 50
The 14 conjugacy class representatives for $D_{25}$
Character table for $D_{25}$

Intermediate fields

5.1.51529.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.2.0.1}{2} }^{12}{,}\,{\href{/padicField/2.1.0.1}{1} }$ $25$ ${\href{/padicField/5.2.0.1}{2} }^{12}{,}\,{\href{/padicField/5.1.0.1}{1} }$ $25$ R ${\href{/padicField/13.2.0.1}{2} }^{12}{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.2.0.1}{2} }^{12}{,}\,{\href{/padicField/17.1.0.1}{1} }$ $25$ $25$ $25$ ${\href{/padicField/31.2.0.1}{2} }^{12}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.2.0.1}{2} }^{12}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.2.0.1}{2} }^{12}{,}\,{\href{/padicField/41.1.0.1}{1} }$ $25$ $25$ $25$ ${\href{/padicField/59.5.0.1}{5} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display Deg $25$$5$$5$$20$
\(227\) Copy content Toggle raw display $\Q_{227}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.227.2t1.a.a$1$ $ 227 $ \(\Q(\sqrt{-227}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.227.5t2.a.b$2$ $ 227 $ 5.1.51529.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.227.5t2.a.a$2$ $ 227 $ 5.1.51529.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.27467.25t4.a.f$2$ $ 11^{2} \cdot 227 $ 25.1.12594008714591324159904490763426952893783035367521.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.27467.25t4.a.d$2$ $ 11^{2} \cdot 227 $ 25.1.12594008714591324159904490763426952893783035367521.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.27467.25t4.a.h$2$ $ 11^{2} \cdot 227 $ 25.1.12594008714591324159904490763426952893783035367521.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.27467.25t4.a.c$2$ $ 11^{2} \cdot 227 $ 25.1.12594008714591324159904490763426952893783035367521.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.27467.25t4.a.i$2$ $ 11^{2} \cdot 227 $ 25.1.12594008714591324159904490763426952893783035367521.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.27467.25t4.a.g$2$ $ 11^{2} \cdot 227 $ 25.1.12594008714591324159904490763426952893783035367521.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.27467.25t4.a.a$2$ $ 11^{2} \cdot 227 $ 25.1.12594008714591324159904490763426952893783035367521.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.27467.25t4.a.j$2$ $ 11^{2} \cdot 227 $ 25.1.12594008714591324159904490763426952893783035367521.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.27467.25t4.a.e$2$ $ 11^{2} \cdot 227 $ 25.1.12594008714591324159904490763426952893783035367521.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.27467.25t4.a.b$2$ $ 11^{2} \cdot 227 $ 25.1.12594008714591324159904490763426952893783035367521.1 $D_{25}$ (as 25T4) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.