Normalized defining polynomial
\( x^{25} - 11 x^{24} + 42 x^{23} - 37 x^{22} - 156 x^{21} + 345 x^{20} + 267 x^{19} - 2248 x^{18} + 5531 x^{17} - 338 x^{16} - 41434 x^{15} + 71882 x^{14} + 112392 x^{13} - 407865 x^{12} + 80824 x^{11} + 717928 x^{10} - 228258 x^{9} - 1185331 x^{8} + 280801 x^{7} + 1733675 x^{6} - 74160 x^{5} - 2202750 x^{4} - 202350 x^{3} + 1981500 x^{2} + 536000 x - 1401875 \)
Invariants
Degree: | $25$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(1219471702607488515548387495680371337890625\)\(\medspace = 5^{12}\cdot 643^{12}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $48.24$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 643$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{8} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{6} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{7} + \frac{2}{5} a^{3}$, $\frac{1}{25} a^{16} - \frac{2}{25} a^{15} + \frac{2}{25} a^{14} - \frac{2}{25} a^{13} - \frac{1}{25} a^{12} - \frac{1}{25} a^{11} + \frac{1}{25} a^{10} - \frac{1}{25} a^{9} - \frac{11}{25} a^{8} + \frac{3}{25} a^{7} + \frac{12}{25} a^{6} + \frac{3}{25} a^{5} + \frac{11}{25} a^{4} + \frac{2}{5} a^{2}$, $\frac{1}{25} a^{17} - \frac{2}{25} a^{15} + \frac{2}{25} a^{14} + \frac{2}{25} a^{12} - \frac{1}{25} a^{11} + \frac{1}{25} a^{10} + \frac{2}{25} a^{9} - \frac{4}{25} a^{8} - \frac{7}{25} a^{7} + \frac{2}{25} a^{6} - \frac{3}{25} a^{5} + \frac{2}{25} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{18} - \frac{2}{25} a^{15} - \frac{1}{25} a^{14} - \frac{2}{25} a^{13} + \frac{2}{25} a^{12} - \frac{1}{25} a^{11} - \frac{1}{25} a^{10} - \frac{1}{25} a^{9} + \frac{6}{25} a^{8} - \frac{12}{25} a^{7} - \frac{9}{25} a^{6} + \frac{3}{25} a^{5} - \frac{8}{25} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{175} a^{19} - \frac{1}{175} a^{18} - \frac{3}{175} a^{17} + \frac{2}{175} a^{16} - \frac{11}{175} a^{15} + \frac{6}{175} a^{14} - \frac{4}{175} a^{13} + \frac{12}{175} a^{12} + \frac{4}{175} a^{11} - \frac{4}{175} a^{10} - \frac{13}{175} a^{9} - \frac{8}{35} a^{8} - \frac{54}{175} a^{7} + \frac{9}{175} a^{6} - \frac{11}{35} a^{5} - \frac{74}{175} a^{4} + \frac{1}{5} a^{3} - \frac{17}{35} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{875} a^{20} + \frac{2}{875} a^{19} + \frac{3}{175} a^{18} - \frac{1}{125} a^{17} - \frac{1}{175} a^{16} - \frac{34}{875} a^{15} - \frac{1}{125} a^{14} - \frac{1}{125} a^{13} - \frac{23}{875} a^{12} - \frac{13}{875} a^{11} - \frac{81}{875} a^{10} - \frac{13}{175} a^{9} + \frac{57}{875} a^{8} - \frac{11}{175} a^{7} - \frac{11}{125} a^{6} + \frac{279}{875} a^{5} - \frac{1}{175} a^{4} + \frac{12}{35} a^{3} - \frac{3}{7} a^{2} + \frac{9}{35} a + \frac{2}{7}$, $\frac{1}{875} a^{21} + \frac{1}{875} a^{19} + \frac{8}{875} a^{18} + \frac{4}{875} a^{17} - \frac{9}{875} a^{16} - \frac{74}{875} a^{15} + \frac{87}{875} a^{14} + \frac{66}{875} a^{13} + \frac{53}{875} a^{12} + \frac{9}{175} a^{11} - \frac{73}{875} a^{10} + \frac{2}{875} a^{9} - \frac{47}{125} a^{8} - \frac{22}{875} a^{7} + \frac{4}{125} a^{6} + \frac{302}{875} a^{5} - \frac{9}{25} a^{4} + \frac{2}{7} a^{3} + \frac{17}{35} a^{2} + \frac{12}{35} a + \frac{1}{7}$, $\frac{1}{875} a^{22} + \frac{1}{875} a^{19} - \frac{6}{875} a^{18} + \frac{13}{875} a^{17} - \frac{9}{875} a^{16} + \frac{36}{875} a^{15} + \frac{8}{875} a^{14} - \frac{12}{175} a^{13} - \frac{62}{875} a^{12} + \frac{1}{35} a^{11} - \frac{2}{875} a^{10} + \frac{81}{875} a^{9} - \frac{124}{875} a^{8} - \frac{312}{875} a^{7} - \frac{51}{875} a^{6} + \frac{416}{875} a^{5} - \frac{1}{175} a^{4} - \frac{9}{35} a^{3} - \frac{1}{7} a^{2} + \frac{6}{35} a - \frac{3}{7}$, $\frac{1}{914375} a^{23} - \frac{27}{130625} a^{22} + \frac{74}{130625} a^{21} + \frac{183}{914375} a^{20} + \frac{2612}{914375} a^{19} - \frac{8989}{914375} a^{18} + \frac{4457}{914375} a^{17} - \frac{1726}{182875} a^{16} + \frac{18719}{914375} a^{15} - \frac{2637}{182875} a^{14} - \frac{58148}{914375} a^{13} - \frac{45664}{914375} a^{12} + \frac{11772}{914375} a^{11} + \frac{4568}{914375} a^{10} - \frac{88947}{914375} a^{9} + \frac{12294}{48125} a^{8} + \frac{432346}{914375} a^{7} - \frac{72406}{182875} a^{6} + \frac{84979}{182875} a^{5} + \frac{129}{3325} a^{4} - \frac{3834}{36575} a^{3} + \frac{2594}{7315} a^{2} + \frac{2034}{7315} a - \frac{58}{209}$, $\frac{1}{7032120241317874349862747172221045400116768125} a^{24} + \frac{163920236424233816848951656575002233342}{1406424048263574869972549434444209080023353625} a^{23} - \frac{10175833450478359938963028807551168480518}{7032120241317874349862747172221045400116768125} a^{22} + \frac{631302742416154831591125425846887254313513}{1406424048263574869972549434444209080023353625} a^{21} + \frac{388297337322688714742227427847842930285897}{1004588605902553478551821024603006485730966875} a^{20} + \frac{2681906220677219058507788797559941994486849}{7032120241317874349862747172221045400116768125} a^{19} - \frac{4202384270082431656990724846795444300517589}{639283658301624940896613379292822309101524375} a^{18} + \frac{88420552988514400485277788556475814560224213}{7032120241317874349862747172221045400116768125} a^{17} - \frac{105818685483136171269620264009804922875056126}{7032120241317874349862747172221045400116768125} a^{16} - \frac{50082466498813264613094465904324382163378004}{7032120241317874349862747172221045400116768125} a^{15} + \frac{40938651271554257613489642299609761924698012}{7032120241317874349862747172221045400116768125} a^{14} + \frac{389787375383225005926254283412662978076639209}{7032120241317874349862747172221045400116768125} a^{13} + \frac{669956397186365183896231880055066231360567986}{7032120241317874349862747172221045400116768125} a^{12} - \frac{608950091897389053142369336549973591076552329}{7032120241317874349862747172221045400116768125} a^{11} - \frac{66698020083121918853221552901935186954046458}{1406424048263574869972549434444209080023353625} a^{10} + \frac{1092032586402293236918995095791484829811579}{91326236900232134413801911327546044157360625} a^{9} + \frac{672265933666085945674572187442473764209886487}{1406424048263574869972549434444209080023353625} a^{8} - \frac{2986862251068473747522996306051470190364887251}{7032120241317874349862747172221045400116768125} a^{7} + \frac{798791402248430676434351765750272836609074}{5114269266412999527172907034342578472812195} a^{6} - \frac{256108205557872183209707133460942173531007704}{1406424048263574869972549434444209080023353625} a^{5} + \frac{16472615943138208351548314262041635275420634}{40183544236102139142072840984120259429238675} a^{4} + \frac{3474021212389261540482021588397402842106822}{40183544236102139142072840984120259429238675} a^{3} - \frac{21308681566890012292728764647820097245071677}{56256961930542994798901977377768363200934145} a^{2} - \frac{26827877004292823634166721008503685980242049}{56256961930542994798901977377768363200934145} a + \frac{133586844875132207462325452355799621054403}{11251392386108598959780395475553672640186829}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $12$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 1237128997505.3247 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 50 |
The 14 conjugacy class representatives for $D_{25}$ |
Character table for $D_{25}$ |
Intermediate fields
5.1.10336225.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $25$ | $25$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $25$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $25$ | $25$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $25$ | $25$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
643 | Data not computed |