# SageMath code for working with number field 24.4.940350029043078386535797119140625.2 # (Note that not all these functions may be available, and some may take a long time to execute.) # Define the number field: x = polygen(QQ); K. = NumberField(x^24 - 2*x^23 + 6*x^22 - 5*x^21 + 11*x^20 - 17*x^19 + 2*x^18 - 34*x^17 - 139*x^16 - 108*x^15 - 455*x^14 - 497*x^13 - 1230*x^12 - 1691*x^11 - 2719*x^10 - 4214*x^9 - 4936*x^8 - 6130*x^7 - 5653*x^6 - 4317*x^5 - 2323*x^4 - 45*x^3 - 323*x^2 + 428*x + 173) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Galois group: K.galois_group(type='pari') # Frobenius cycle types: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]