Normalized defining polynomial
\( x^{24} - 4 x^{23} + 7 x^{22} - 10 x^{21} + 23 x^{20} - 32 x^{19} - 21 x^{18} + 156 x^{17} - 359 x^{16} + 654 x^{15} - 876 x^{14} + 646 x^{13} + 61 x^{12} - 1012 x^{11} + 2338 x^{10} - 3178 x^{9} + 2897 x^{8} - 2474 x^{7} + 1335 x^{6} - 52 x^{5} - 44 x^{4} + 454 x^{3} - 524 x^{2} + 62 x - 197 \)
Invariants
Degree: | $24$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[4, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(49177850545349555386638457176064\)\(\medspace = 2^{16}\cdot 487^{10}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $20.92$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 487$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $4$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{115185014073587688626044229896894882} a^{23} + \frac{13196870324992556049598572122405941}{115185014073587688626044229896894882} a^{22} - \frac{11671535596225596628078109391054221}{115185014073587688626044229896894882} a^{21} + \frac{23744713858496308676233787942642429}{115185014073587688626044229896894882} a^{20} - \frac{7530635156796957321962582417836355}{57592507036793844313022114948447441} a^{19} - \frac{9952557122952966122951643586578086}{57592507036793844313022114948447441} a^{18} - \frac{16497674490836624917515616632409013}{115185014073587688626044229896894882} a^{17} - \frac{26648920765431735264368239823907797}{115185014073587688626044229896894882} a^{16} + \frac{24639246379131273432660992799893513}{115185014073587688626044229896894882} a^{15} + \frac{8709625889055557196854135294074418}{57592507036793844313022114948447441} a^{14} + \frac{567001852376675415387248568428411}{115185014073587688626044229896894882} a^{13} + \frac{11760654826935316502380432883244974}{57592507036793844313022114948447441} a^{12} - \frac{13811697744241437944776138472011542}{57592507036793844313022114948447441} a^{11} + \frac{1736383686560729479278551873265387}{57592507036793844313022114948447441} a^{10} + \frac{20554503329569114793407113851770087}{115185014073587688626044229896894882} a^{9} - \frac{26383724191937117223132792792896514}{57592507036793844313022114948447441} a^{8} - \frac{18064222699371268733661761602401621}{115185014073587688626044229896894882} a^{7} - \frac{56763120701848791646755797650509427}{115185014073587688626044229896894882} a^{6} + \frac{6784424253851806116067608127518928}{57592507036793844313022114948447441} a^{5} - \frac{26030788305178578455692534578659120}{57592507036793844313022114948447441} a^{4} + \frac{22462599389480056929401766682526854}{57592507036793844313022114948447441} a^{3} - \frac{21314950002666189578013652663796383}{57592507036793844313022114948447441} a^{2} + \frac{12608012883362772250574401591255960}{57592507036793844313022114948447441} a + \frac{38903284968337995668744984436211425}{115185014073587688626044229896894882}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 1432261.5638336123 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 240 |
The 18 conjugacy class representatives for $C_4.A_5$ |
Character table for $C_4.A_5$ |
Intermediate fields
6.2.3794704.1, Deg 12 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 40 siblings: | data not computed |
Arithmetically equvalently sibling: | 24.4.49177850545349555386638457176064.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | $20{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }^{2}$ | $20{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{6}$ | $20{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |
2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
487 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.487.2t1.a.a | $1$ | $ 487 $ | \(\Q(\sqrt{-487}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
2.1948.120.a.a | $2$ | $ 2^{2} \cdot 487 $ | 24.4.49177850545349555386638457176064.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
2.1948.120.a.b | $2$ | $ 2^{2} \cdot 487 $ | 24.4.49177850545349555386638457176064.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
2.1948.120.a.c | $2$ | $ 2^{2} \cdot 487 $ | 24.4.49177850545349555386638457176064.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
2.1948.120.a.d | $2$ | $ 2^{2} \cdot 487 $ | 24.4.49177850545349555386638457176064.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
* | 3.1948.12t76.a.a | $3$ | $ 2^{2} \cdot 487 $ | 10.0.438293256499312.1 | $A_5\times C_2$ (as 10T11) | $1$ | $1$ |
* | 3.1948.12t76.a.b | $3$ | $ 2^{2} \cdot 487 $ | 10.0.438293256499312.1 | $A_5\times C_2$ (as 10T11) | $1$ | $1$ |
3.948676.12t33.a.a | $3$ | $ 2^{2} \cdot 487^{2}$ | 5.1.948676.1 | $A_5$ (as 5T4) | $1$ | $-1$ | |
3.948676.12t33.a.b | $3$ | $ 2^{2} \cdot 487^{2}$ | 5.1.948676.1 | $A_5$ (as 5T4) | $1$ | $-1$ | |
4.948676.10t11.a.a | $4$ | $ 2^{2} \cdot 487^{2}$ | 10.0.438293256499312.1 | $A_5\times C_2$ (as 10T11) | $1$ | $0$ | |
4.948676.5t4.a.a | $4$ | $ 2^{2} \cdot 487^{2}$ | 5.1.948676.1 | $A_5$ (as 5T4) | $1$ | $0$ | |
4.948676.40t188.a.a | $4$ | $ 2^{2} \cdot 487^{2}$ | 24.4.49177850545349555386638457176064.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
4.948676.40t188.a.b | $4$ | $ 2^{2} \cdot 487^{2}$ | 24.4.49177850545349555386638457176064.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
5.1848020848.12t75.a.a | $5$ | $ 2^{4} \cdot 487^{3}$ | 10.0.438293256499312.1 | $A_5\times C_2$ (as 10T11) | $1$ | $-1$ | |
* | 5.3794704.6t12.a.a | $5$ | $ 2^{4} \cdot 487^{2}$ | 5.1.948676.1 | $A_5$ (as 5T4) | $1$ | $1$ |
* | 6.1848020848.24t576.a.a | $6$ | $ 2^{4} \cdot 487^{3}$ | 24.4.49177850545349555386638457176064.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ |
* | 6.1848020848.24t576.a.b | $6$ | $ 2^{4} \cdot 487^{3}$ | 24.4.49177850545349555386638457176064.2 | $C_4.A_5$ (as 24T576) | $0$ | $0$ |