Normalized defining polynomial
\( x^{24} - 3 x^{23} + x^{22} + 10 x^{21} - 43 x^{20} + 48 x^{19} + 120 x^{18} - 317 x^{17} + 184 x^{16} + 607 x^{15} - 1095 x^{14} - 247 x^{13} + 1345 x^{12} - 781 x^{11} + 2081 x^{10} + 2799 x^{9} - 6866 x^{8} - 6853 x^{7} + 2370 x^{6} + 3678 x^{5} + 629 x^{4} - 178 x^{3} - 33 x^{2} - x + 1 \)
Invariants
Degree: | $24$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[4, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(3740066297213363461879419371585536\)\(\medspace = 2^{16}\cdot 751^{10}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $25.05$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 751$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $4$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{871506839132812529726775283009574219585257} a^{23} + \frac{171349164318814915081720774398295885622170}{871506839132812529726775283009574219585257} a^{22} + \frac{83270601910518521360178582359606933066783}{871506839132812529726775283009574219585257} a^{21} + \frac{185015981251216393142884063905964874697961}{871506839132812529726775283009574219585257} a^{20} + \frac{9076639175150913221007174263243652953216}{871506839132812529726775283009574219585257} a^{19} + \frac{80025982182995665332447003444446976090521}{871506839132812529726775283009574219585257} a^{18} - \frac{205481072367377663271054797899208460403714}{871506839132812529726775283009574219585257} a^{17} - \frac{428183597176976051648911200836180937956704}{871506839132812529726775283009574219585257} a^{16} + \frac{300897489862204039981014453681235362235168}{871506839132812529726775283009574219585257} a^{15} + \frac{426800599478135888373490782663225575199296}{871506839132812529726775283009574219585257} a^{14} + \frac{7266282081408564557705182194639835670410}{871506839132812529726775283009574219585257} a^{13} + \frac{101754179932564798566464765826313980527519}{871506839132812529726775283009574219585257} a^{12} - \frac{53498626163714627898737042298275394686666}{871506839132812529726775283009574219585257} a^{11} - \frac{367429784336785238232136244306270993627034}{871506839132812529726775283009574219585257} a^{10} + \frac{44533466401942839897779842211832879526907}{871506839132812529726775283009574219585257} a^{9} - \frac{265234218130513700665364982073862066474520}{871506839132812529726775283009574219585257} a^{8} - \frac{117078681805163563805248329233932030121549}{871506839132812529726775283009574219585257} a^{7} - \frac{134414374085746639692689686770562179542547}{871506839132812529726775283009574219585257} a^{6} + \frac{57923845431592406422187819812529221021390}{871506839132812529726775283009574219585257} a^{5} - \frac{193905303783299388172948296483239537364248}{871506839132812529726775283009574219585257} a^{4} - \frac{333489578198479707884902696994215282588251}{871506839132812529726775283009574219585257} a^{3} - \frac{277101142282695556712522274231812511445882}{871506839132812529726775283009574219585257} a^{2} + \frac{49545594473227120004747254599600911362056}{871506839132812529726775283009574219585257} a + \frac{45820920425031178721306174078431534134836}{871506839132812529726775283009574219585257}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 12097538.188247636 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 240 |
The 18 conjugacy class representatives for $C_4.A_5$ |
Character table for $C_4.A_5$ |
Intermediate fields
6.2.9024016.1, Deg 12 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 40 siblings: | data not computed |
Arithmetically equvalently sibling: | 24.4.3740066297213363461879419371585536.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ | $20{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | $20{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{6}$ | $20{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |
2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
751 | Data not computed |