Normalized defining polynomial
\( x^{24} - 4 x^{23} + 18 x^{22} - 59 x^{21} + 167 x^{20} - 420 x^{19} + 919 x^{18} - 1828 x^{17} + 3235 x^{16} - 4879 x^{15} + 6403 x^{14} - 6415 x^{13} + 2571 x^{12} + 6076 x^{11} - 21326 x^{10} + 40942 x^{9} - 60476 x^{8} + 73984 x^{7} - 73764 x^{6} + 61224 x^{5} - 43696 x^{4} + 17928 x^{3} - 3216 x^{2} + 720 x + 16 \)
Invariants
Degree: | $24$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[4, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(3740066297213363461879419371585536\)\(\medspace = 2^{16}\cdot 751^{10}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $25.05$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 751$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $4$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{2} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{2} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} + \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{20} - \frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{2} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{21} - \frac{1}{8} a^{18} - \frac{1}{8} a^{17} - \frac{1}{4} a^{16} - \frac{1}{8} a^{15} - \frac{1}{4} a^{14} + \frac{1}{8} a^{13} + \frac{3}{8} a^{12} - \frac{3}{8} a^{11} - \frac{3}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{22} - \frac{1}{8} a^{19} - \frac{1}{8} a^{18} - \frac{1}{4} a^{17} - \frac{1}{8} a^{16} - \frac{1}{4} a^{15} + \frac{1}{8} a^{14} + \frac{3}{8} a^{13} - \frac{3}{8} a^{12} - \frac{3}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{2762642112619498844741021572266061882880102264} a^{23} + \frac{102865210062477094592057378457622067818337619}{2762642112619498844741021572266061882880102264} a^{22} - \frac{72784612019316993468445258619733799172717917}{1381321056309749422370510786133030941440051132} a^{21} - \frac{10319580684129328130157376091820749477777543}{2762642112619498844741021572266061882880102264} a^{20} + \frac{54533813156942888003910088703327565243984911}{1381321056309749422370510786133030941440051132} a^{19} - \frac{232182670969798660690718238723443078676386481}{2762642112619498844741021572266061882880102264} a^{18} - \frac{647200135340064015653339125919807194472037687}{2762642112619498844741021572266061882880102264} a^{17} - \frac{661569299294629709856161380409347344074483881}{2762642112619498844741021572266061882880102264} a^{16} - \frac{433963421338042819378544149075442334716814155}{2762642112619498844741021572266061882880102264} a^{15} - \frac{55342058120846603316670611513958675882920175}{1381321056309749422370510786133030941440051132} a^{14} - \frac{264359030824412606020927881800642154420823525}{1381321056309749422370510786133030941440051132} a^{13} + \frac{487084847205413150724220478230427326930164999}{1381321056309749422370510786133030941440051132} a^{12} + \frac{78494493164122393365853320870818324050631402}{345330264077437355592627696533257735360012783} a^{11} - \frac{34594886321815730046509714440973656147344559}{2762642112619498844741021572266061882880102264} a^{10} + \frac{327418357995899011603286115816591727326391101}{1381321056309749422370510786133030941440051132} a^{9} - \frac{34157864053957466030853890003542613316062171}{690660528154874711185255393066515470720025566} a^{8} - \frac{30596250132247113585002203778171467924004117}{690660528154874711185255393066515470720025566} a^{7} - \frac{391003731382428052782495865215450238276703913}{1381321056309749422370510786133030941440051132} a^{6} + \frac{44301329643000673828317540734085610973141013}{690660528154874711185255393066515470720025566} a^{5} + \frac{103690657190438316177804299235857303796925169}{690660528154874711185255393066515470720025566} a^{4} - \frac{15666242017826402187312414793133057717883197}{345330264077437355592627696533257735360012783} a^{3} + \frac{30850618418593753378145816483129991038160498}{345330264077437355592627696533257735360012783} a^{2} + \frac{79965225970436942529848038639275127884897781}{345330264077437355592627696533257735360012783} a - \frac{106855904929287352993098074372431056616271096}{345330264077437355592627696533257735360012783}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 12097538.188247636 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 240 |
The 18 conjugacy class representatives for $C_4.A_5$ |
Character table for $C_4.A_5$ |
Intermediate fields
6.2.9024016.1, Deg 12 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 40 siblings: | data not computed |
Arithmetically equvalently sibling: | 24.4.3740066297213363461879419371585536.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ | $20{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | $20{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{6}$ | $20{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |
2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
751 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.751.2t1.a.a | $1$ | $ 751 $ | \(\Q(\sqrt{-751}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
2.3004.120.b.a | $2$ | $ 2^{2} \cdot 751 $ | 24.4.3740066297213363461879419371585536.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
2.3004.120.b.b | $2$ | $ 2^{2} \cdot 751 $ | 24.4.3740066297213363461879419371585536.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
2.3004.120.b.c | $2$ | $ 2^{2} \cdot 751 $ | 24.4.3740066297213363461879419371585536.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
2.3004.120.b.d | $2$ | $ 2^{2} \cdot 751 $ | 24.4.3740066297213363461879419371585536.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
* | 3.3004.12t76.a.a | $3$ | $ 2^{2} \cdot 751 $ | 10.0.3822255090060016.1 | $A_5\times C_2$ (as 10T11) | $1$ | $1$ |
* | 3.3004.12t76.a.b | $3$ | $ 2^{2} \cdot 751 $ | 10.0.3822255090060016.1 | $A_5\times C_2$ (as 10T11) | $1$ | $1$ |
3.2256004.12t33.a.a | $3$ | $ 2^{2} \cdot 751^{2}$ | 5.1.2256004.1 | $A_5$ (as 5T4) | $1$ | $-1$ | |
3.2256004.12t33.a.b | $3$ | $ 2^{2} \cdot 751^{2}$ | 5.1.2256004.1 | $A_5$ (as 5T4) | $1$ | $-1$ | |
4.2256004.10t11.a.a | $4$ | $ 2^{2} \cdot 751^{2}$ | 10.0.3822255090060016.1 | $A_5\times C_2$ (as 10T11) | $1$ | $0$ | |
4.2256004.5t4.a.a | $4$ | $ 2^{2} \cdot 751^{2}$ | 5.1.2256004.1 | $A_5$ (as 5T4) | $1$ | $0$ | |
4.2256004.40t188.b.a | $4$ | $ 2^{2} \cdot 751^{2}$ | 24.4.3740066297213363461879419371585536.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
4.2256004.40t188.b.b | $4$ | $ 2^{2} \cdot 751^{2}$ | 24.4.3740066297213363461879419371585536.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ | |
5.6777036016.12t75.a.a | $5$ | $ 2^{4} \cdot 751^{3}$ | 10.0.3822255090060016.1 | $A_5\times C_2$ (as 10T11) | $1$ | $-1$ | |
* | 5.9024016.6t12.a.a | $5$ | $ 2^{4} \cdot 751^{2}$ | 5.1.2256004.1 | $A_5$ (as 5T4) | $1$ | $1$ |
* | 6.6777036016.24t576.b.a | $6$ | $ 2^{4} \cdot 751^{3}$ | 24.4.3740066297213363461879419371585536.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ |
* | 6.6777036016.24t576.b.b | $6$ | $ 2^{4} \cdot 751^{3}$ | 24.4.3740066297213363461879419371585536.1 | $C_4.A_5$ (as 24T576) | $0$ | $0$ |