Normalized defining polynomial
\( x^{24} + 5 x^{22} - 9 x^{21} - 17 x^{20} - 76 x^{19} - 136 x^{18} - 174 x^{17} - 166 x^{16} + 28 x^{15} + 141 x^{14} + 361 x^{13} + 448 x^{12} + 1384 x^{11} + 3389 x^{10} + 8270 x^{9} + 11234 x^{8} + 16185 x^{7} + 17718 x^{6} + 15868 x^{5} + 15966 x^{4} + 10226 x^{3} + 4276 x^{2} + 3258 x + 1459 \)
Invariants
Degree: | $24$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[4, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(1537774657557415544813485393913449\)\(\medspace = 2083^{10}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $24.14$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2083$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $4$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{73} a^{22} - \frac{11}{73} a^{21} + \frac{25}{73} a^{20} + \frac{24}{73} a^{19} - \frac{32}{73} a^{18} - \frac{31}{73} a^{17} + \frac{6}{73} a^{16} - \frac{29}{73} a^{15} - \frac{15}{73} a^{14} - \frac{17}{73} a^{13} + \frac{18}{73} a^{12} - \frac{18}{73} a^{11} - \frac{4}{73} a^{10} + \frac{34}{73} a^{9} - \frac{12}{73} a^{8} + \frac{4}{73} a^{7} - \frac{8}{73} a^{6} + \frac{28}{73} a^{5} - \frac{32}{73} a^{4} + \frac{33}{73} a^{3} + \frac{1}{73} a^{2} + \frac{20}{73} a + \frac{13}{73}$, $\frac{1}{1645186974275700917726662733962364567693322221381} a^{23} - \frac{2190995143971307031912721536334452333504228282}{1645186974275700917726662733962364567693322221381} a^{22} - \frac{437611615088791815081869014073698451444397387729}{1645186974275700917726662733962364567693322221381} a^{21} + \frac{647470821072303827519914056315736071560750362312}{1645186974275700917726662733962364567693322221381} a^{20} - \frac{568972904432962661656781422970404190656212434749}{1645186974275700917726662733962364567693322221381} a^{19} - \frac{634361912006356678772606004480768173003566233726}{1645186974275700917726662733962364567693322221381} a^{18} - \frac{735307982007087212042064917726163276377474067313}{1645186974275700917726662733962364567693322221381} a^{17} - \frac{46022256377659009554716072450941748150244470893}{1645186974275700917726662733962364567693322221381} a^{16} - \frac{662408069752058194263377944076141383319447392559}{1645186974275700917726662733962364567693322221381} a^{15} - \frac{433415563315763911589381092580682408318802936484}{1645186974275700917726662733962364567693322221381} a^{14} - \frac{808566614526914284850364694385424938649215725344}{1645186974275700917726662733962364567693322221381} a^{13} + \frac{383640571002589539601101490085166139028195570468}{1645186974275700917726662733962364567693322221381} a^{12} + \frac{113864821996663168146652519106170966340327742031}{1645186974275700917726662733962364567693322221381} a^{11} + \frac{300230490898256854529090000922011179684354331285}{1645186974275700917726662733962364567693322221381} a^{10} - \frac{26888886871913822954260320966397522808355999049}{1645186974275700917726662733962364567693322221381} a^{9} - \frac{688876708694360466139543795174717234698257904242}{1645186974275700917726662733962364567693322221381} a^{8} - \frac{555021248940417350798969262397516156631630635757}{1645186974275700917726662733962364567693322221381} a^{7} + \frac{574944885914486045175882517204428367823089355390}{1645186974275700917726662733962364567693322221381} a^{6} - \frac{29075605895655818606005775146043402420936983175}{1645186974275700917726662733962364567693322221381} a^{5} + \frac{796890991607973954782947333008153123554537699827}{1645186974275700917726662733962364567693322221381} a^{4} - \frac{123491659539365913760422851874766408966829512201}{1645186974275700917726662733962364567693322221381} a^{3} + \frac{59088243060726062631099153020395149541108643671}{1645186974275700917726662733962364567693322221381} a^{2} + \frac{585187777031209399765429072552081140870062601853}{1645186974275700917726662733962364567693322221381} a + \frac{702450411082488607747960685769666129201538310090}{1645186974275700917726662733962364567693322221381}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 10781013.84232622 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 240 |
The 18 conjugacy class representatives for $C_4.A_5$ |
Character table for $C_4.A_5$ |
Intermediate fields
6.2.4338889.1, Deg 12 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 40 siblings: | data not computed |
Arithmetically equvalently sibling: | 24.4.1537774657557415544813485393913449.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $20{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | $20{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | $20{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | $20{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{6}$ | $20{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2083 | Data not computed |