Normalized defining polynomial
\( x^{24} - 2 x^{23} - 8 x^{22} - 2 x^{21} + 70 x^{20} - 33 x^{19} - 156 x^{18} + 43 x^{17} + 433 x^{16} - 998 x^{15} + 433 x^{14} + 1850 x^{13} - 1996 x^{12} - 1334 x^{11} + 1462 x^{10} + 5 x^{9} - 1195 x^{8} - 1071 x^{7} - 747 x^{6} - 160 x^{5} + 26 x^{4} - 66 x^{3} - 57 x^{2} - 14 x - 1 \)
Invariants
Degree: | $24$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[4, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(1537774657557415544813485393913449\)\(\medspace = 2083^{10}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $24.14$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2083$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $4$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{84753373039324165201925412594029144171} a^{23} + \frac{8826023875837578237495068875450125018}{84753373039324165201925412594029144171} a^{22} - \frac{18195891377689533246038707133039710192}{84753373039324165201925412594029144171} a^{21} - \frac{36784127225931776510871373427696546569}{84753373039324165201925412594029144171} a^{20} - \frac{1160848353530740843194809581596939587}{84753373039324165201925412594029144171} a^{19} + \frac{25720156941615916758599673842900234061}{84753373039324165201925412594029144171} a^{18} + \frac{34695964771168874717309517082133579216}{84753373039324165201925412594029144171} a^{17} + \frac{14838771522168440654475303473990151841}{84753373039324165201925412594029144171} a^{16} - \frac{37333446656838321848722494305516475623}{84753373039324165201925412594029144171} a^{15} + \frac{18801675178973428378571128028046385934}{84753373039324165201925412594029144171} a^{14} + \frac{15327781705989055493730315918875991483}{84753373039324165201925412594029144171} a^{13} + \frac{201095899419391379281334040252559862}{1971008675333120120975009595209980097} a^{12} + \frac{20127971428182742773030339471667864363}{84753373039324165201925412594029144171} a^{11} - \frac{12228390566164592011860362152138181610}{84753373039324165201925412594029144171} a^{10} + \frac{31135257756950843355068856748511838415}{84753373039324165201925412594029144171} a^{9} + \frac{20803630907021541493938781994448825790}{84753373039324165201925412594029144171} a^{8} - \frac{25043423249496814082198785418350069427}{84753373039324165201925412594029144171} a^{7} + \frac{36138825608250072343597162565325053966}{84753373039324165201925412594029144171} a^{6} + \frac{1293260086785472224486435996836969425}{84753373039324165201925412594029144171} a^{5} - \frac{38132379068565402472593533146179307427}{84753373039324165201925412594029144171} a^{4} + \frac{38628755150631384487290990776692832971}{84753373039324165201925412594029144171} a^{3} - \frac{37834450791030664206845852580851419461}{84753373039324165201925412594029144171} a^{2} - \frac{32661795568825269556617284138442061884}{84753373039324165201925412594029144171} a - \frac{33301543378776042200603292264127584748}{84753373039324165201925412594029144171}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 10781013.84232622 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 240 |
The 18 conjugacy class representatives for $C_4.A_5$ |
Character table for $C_4.A_5$ |
Intermediate fields
6.2.4338889.1, Deg 12 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 40 siblings: | data not computed |
Arithmetically equvalently sibling: | 24.4.1537774657557415544813485393913449.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $20{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | $20{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | $20{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | $20{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{6}$ | $20{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2083 | Data not computed |