Normalized defining polynomial
\( x^{24} - 119 x^{22} + 5474 x^{20} - 129353 x^{18} + 1774290 x^{16} - 14954016 x^{14} + 79004219 x^{12} - 260208375 x^{10} + 521209766 x^{8} - 610027558 x^{6} + 389271729 x^{4} - 117961130 x^{2} + 11796113 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(92492825191368190136484582761598050250102639951872=2^{24}\cdot 7^{20}\cdot 17^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $120.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(476=2^{2}\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{476}(1,·)$, $\chi_{476}(451,·)$, $\chi_{476}(137,·)$, $\chi_{476}(205,·)$, $\chi_{476}(467,·)$, $\chi_{476}(81,·)$, $\chi_{476}(19,·)$, $\chi_{476}(149,·)$, $\chi_{476}(87,·)$, $\chi_{476}(223,·)$, $\chi_{476}(225,·)$, $\chi_{476}(355,·)$, $\chi_{476}(421,·)$, $\chi_{476}(195,·)$, $\chi_{476}(423,·)$, $\chi_{476}(169,·)$, $\chi_{476}(429,·)$, $\chi_{476}(111,·)$, $\chi_{476}(305,·)$, $\chi_{476}(83,·)$, $\chi_{476}(373,·)$, $\chi_{476}(361,·)$, $\chi_{476}(59,·)$, $\chi_{476}(383,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6}$, $\frac{1}{7} a^{7}$, $\frac{1}{119} a^{8}$, $\frac{1}{119} a^{9}$, $\frac{1}{119} a^{10}$, $\frac{1}{119} a^{11}$, $\frac{1}{10829} a^{12} - \frac{1}{13}$, $\frac{1}{10829} a^{13} - \frac{1}{13} a$, $\frac{1}{10829} a^{14} - \frac{1}{13} a^{2}$, $\frac{1}{10829} a^{15} - \frac{1}{13} a^{3}$, $\frac{1}{184093} a^{16} + \frac{3}{13} a^{4}$, $\frac{1}{184093} a^{17} + \frac{3}{13} a^{5}$, $\frac{1}{5154604} a^{18} - \frac{1}{21658} a^{12} - \frac{23}{364} a^{6} + \frac{15}{52}$, $\frac{1}{5154604} a^{19} - \frac{1}{21658} a^{13} - \frac{23}{364} a^{7} + \frac{15}{52} a$, $\frac{1}{871128076} a^{20} + \frac{15}{435564038} a^{18} - \frac{6}{2393209} a^{16} - \frac{29}{3660202} a^{14} - \frac{58}{1830101} a^{12} + \frac{40}{20111} a^{10} - \frac{1535}{1045772} a^{8} + \frac{1007}{30758} a^{6} - \frac{24}{169} a^{4} + \frac{2671}{8788} a^{2} - \frac{1795}{4394}$, $\frac{1}{871128076} a^{21} + \frac{15}{435564038} a^{19} - \frac{6}{2393209} a^{17} - \frac{29}{3660202} a^{15} - \frac{58}{1830101} a^{13} + \frac{40}{20111} a^{11} - \frac{1535}{1045772} a^{9} + \frac{1007}{30758} a^{7} - \frac{24}{169} a^{5} + \frac{2671}{8788} a^{3} - \frac{1795}{4394} a$, $\frac{1}{267436319332} a^{22} - \frac{38}{66859079833} a^{20} + \frac{44}{734715163} a^{18} + \frac{1861}{2728942034} a^{16} + \frac{2952}{80263001} a^{14} - \frac{90}{3324503} a^{12} + \frac{806285}{321052004} a^{10} + \frac{27207}{11466143} a^{8} - \frac{25118}{363181} a^{6} - \frac{641557}{2697916} a^{4} + \frac{301086}{674479} a^{2} - \frac{21508}{51883}$, $\frac{1}{267436319332} a^{23} - \frac{38}{66859079833} a^{21} + \frac{44}{734715163} a^{19} + \frac{1861}{2728942034} a^{17} + \frac{2952}{80263001} a^{15} - \frac{90}{3324503} a^{13} + \frac{806285}{321052004} a^{11} + \frac{27207}{11466143} a^{9} - \frac{25118}{363181} a^{7} - \frac{641557}{2697916} a^{5} + \frac{301086}{674479} a^{3} - \frac{21508}{51883} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 439337526752110400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.4.4913.1, 6.6.11796113.1, 8.8.252217127391488.1, 12.12.683635509017782097.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $24$ | $24$ | R | $24$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{24}$ | R | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ | $24$ | $24$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| 7 | Data not computed | ||||||
| 17 | Data not computed | ||||||