Properties

Label 24.24.8524225578...7297.1
Degree $24$
Signature $[24, 0]$
Discriminant $17^{21}\cdot 37^{16}$
Root discriminant $132.47$
Ramified primes $17, 37$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{24}$ (as 24T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![12047969, 81314415, 26771975, -835277336, -1772648953, 101680474, 3631771947, 3300112019, -371523524, -1808188459, -513253877, 370716475, 194940086, -31766523, -31755107, 189772, 2897736, 170477, -160371, -13112, 5469, 414, -109, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 5*x^23 - 109*x^22 + 414*x^21 + 5469*x^20 - 13112*x^19 - 160371*x^18 + 170477*x^17 + 2897736*x^16 + 189772*x^15 - 31755107*x^14 - 31766523*x^13 + 194940086*x^12 + 370716475*x^11 - 513253877*x^10 - 1808188459*x^9 - 371523524*x^8 + 3300112019*x^7 + 3631771947*x^6 + 101680474*x^5 - 1772648953*x^4 - 835277336*x^3 + 26771975*x^2 + 81314415*x + 12047969)
 
gp: K = bnfinit(x^24 - 5*x^23 - 109*x^22 + 414*x^21 + 5469*x^20 - 13112*x^19 - 160371*x^18 + 170477*x^17 + 2897736*x^16 + 189772*x^15 - 31755107*x^14 - 31766523*x^13 + 194940086*x^12 + 370716475*x^11 - 513253877*x^10 - 1808188459*x^9 - 371523524*x^8 + 3300112019*x^7 + 3631771947*x^6 + 101680474*x^5 - 1772648953*x^4 - 835277336*x^3 + 26771975*x^2 + 81314415*x + 12047969, 1)
 

Normalized defining polynomial

\( x^{24} - 5 x^{23} - 109 x^{22} + 414 x^{21} + 5469 x^{20} - 13112 x^{19} - 160371 x^{18} + 170477 x^{17} + 2897736 x^{16} + 189772 x^{15} - 31755107 x^{14} - 31766523 x^{13} + 194940086 x^{12} + 370716475 x^{11} - 513253877 x^{10} - 1808188459 x^{9} - 371523524 x^{8} + 3300112019 x^{7} + 3631771947 x^{6} + 101680474 x^{5} - 1772648953 x^{4} - 835277336 x^{3} + 26771975 x^{2} + 81314415 x + 12047969 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[24, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(852422557828050325453629703955159792180445490817297=17^{21}\cdot 37^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $132.47$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(629=17\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{629}(1,·)$, $\chi_{629}(322,·)$, $\chi_{629}(195,·)$, $\chi_{629}(519,·)$, $\chi_{629}(137,·)$, $\chi_{629}(528,·)$, $\chi_{629}(593,·)$, $\chi_{629}(84,·)$, $\chi_{629}(149,·)$, $\chi_{629}(26,·)$, $\chi_{629}(285,·)$, $\chi_{629}(223,·)$, $\chi_{629}(417,·)$, $\chi_{629}(100,·)$, $\chi_{629}(38,·)$, $\chi_{629}(359,·)$, $\chi_{629}(297,·)$, $\chi_{629}(491,·)$, $\chi_{629}(174,·)$, $\chi_{629}(47,·)$, $\chi_{629}(433,·)$, $\chi_{629}(565,·)$, $\chi_{629}(121,·)$, $\chi_{629}(186,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{101} a^{21} - \frac{47}{101} a^{20} + \frac{10}{101} a^{19} - \frac{8}{101} a^{18} - \frac{2}{101} a^{17} - \frac{44}{101} a^{16} + \frac{10}{101} a^{15} + \frac{33}{101} a^{14} - \frac{48}{101} a^{13} + \frac{43}{101} a^{12} - \frac{14}{101} a^{11} + \frac{45}{101} a^{10} + \frac{6}{101} a^{9} + \frac{50}{101} a^{8} - \frac{24}{101} a^{7} + \frac{21}{101} a^{6} + \frac{45}{101} a^{5} - \frac{28}{101} a^{4} + \frac{26}{101} a^{3} + \frac{12}{101} a^{2} + \frac{41}{101} a - \frac{26}{101}$, $\frac{1}{1425211} a^{22} - \frac{160}{1425211} a^{21} + \frac{33904}{1425211} a^{20} - \frac{505835}{1425211} a^{19} - \frac{50810}{1425211} a^{18} + \frac{438724}{1425211} a^{17} - \frac{297008}{1425211} a^{16} - \frac{378433}{1425211} a^{15} + \frac{171862}{1425211} a^{14} - \frac{286726}{1425211} a^{13} - \frac{57292}{1425211} a^{12} - \frac{180880}{1425211} a^{11} - \frac{212331}{1425211} a^{10} - \frac{266157}{1425211} a^{9} - \frac{379273}{1425211} a^{8} + \frac{298663}{1425211} a^{7} + \frac{597309}{1425211} a^{6} + \frac{600483}{1425211} a^{5} - \frac{271126}{1425211} a^{4} + \frac{30909}{1425211} a^{3} - \frac{57572}{1425211} a^{2} - \frac{686207}{1425211} a - \frac{503678}{1425211}$, $\frac{1}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{23} + \frac{22909592498515533802471732752874472960751905753631958146798145223439819039584}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{22} - \frac{242014258189716155864285818857102311795066738703534970583047030047009221545320308}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{21} + \frac{27015910968069735343766302161257615660411984303518084006286745256562885932728826827}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{20} - \frac{8351949634584142643951795583189560761061459142824481755514073794765580344267005860}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{19} - \frac{3216791406223088718521518124131027764447976623640238140907188602427470511352561403}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{18} - \frac{26529849657669959485448026027616745390134152271215580261792478354264777284064878539}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{17} - \frac{19145020642854480780516534703860055004283730883233526287348857311603133566416828982}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{16} - \frac{2115088837811228139990166565560763577236491905172968582536970762508468343688671786}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{15} - \frac{8671594160727062861943366014425883472610558951007005745772296567923284452073013908}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{14} - \frac{14473676983084407897977034193323771407160519619164205799167237094753746616447848917}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{13} + \frac{14907308131107098291057076273434113585046212401223553377900817330490823832996354001}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{12} - \frac{7865961517904501914365097311443306235736341365724285705843727081212104402946408331}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{11} + \frac{15668424806802867066753560784221142196766170018122802634511577312055153173621652612}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{10} + \frac{19888265523873219197125518856008140988760002057365971953236895818483741639377331898}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{9} + \frac{7422644297065387500474263004808603849934577329073580707448384682675137391390467641}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{8} + \frac{23357284702774069143383669962538693926444712838231976687260820767424449574478958187}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{7} - \frac{26267444530232339360410440336706582216481439018831661983522383564116005012530959759}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{6} + \frac{29002058968881411733215547326166041208239517258811281632862160476333039014946622848}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{5} - \frac{11195141368887956140540229408127019685124483264500039190928120725359216342574936267}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{4} - \frac{29797048162092023117152433873080924434596755658250847686935280341597026042675885287}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{3} - \frac{11106206803844337491761258022306965953408806181429032249574797160639029367878459439}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a^{2} - \frac{27949607891834231798043804694836162310256191418134968304266553704691456375682061000}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923} a - \frac{6125441636957724450795583984418114134895031769514896192160137515997118407543062223}{65994022642130944567068461305385276071577248789876743455107588042355715757023885923}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $23$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 655137207724264700 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{24}$ (as 24T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 24
The 24 conjugacy class representatives for $C_{24}$
Character table for $C_{24}$ is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 3.3.1369.1, 4.4.4913.1, 6.6.9207752993.1, \(\Q(\zeta_{17})^+\), 12.12.416537479679833550394737.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ $24$ $24$ $24$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ R ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{3}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{3}$ R $24$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
17Data not computed
37Data not computed