Normalized defining polynomial
\( x^{24} - 8 x^{23} - 108 x^{22} + 944 x^{21} + 4690 x^{20} - 46592 x^{19} - 104880 x^{18} + 1263752 x^{17} + 1258535 x^{16} - 20818864 x^{15} - 6900956 x^{14} + 217154504 x^{13} - 6961878 x^{12} - 1448821552 x^{11} + 317777564 x^{10} + 6090345968 x^{9} - 1791337062 x^{8} - 15422126936 x^{7} + 4493317356 x^{6} + 21527186808 x^{5} - 4700840216 x^{4} - 14279404728 x^{3} + 307199304 x^{2} + 3801597744 x + 854853761 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(80352295654101908234561020234985111552000000000000=2^{93}\cdot 5^{12}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $120.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1120=2^{5}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1120}(1,·)$, $\chi_{1120}(961,·)$, $\chi_{1120}(389,·)$, $\chi_{1120}(641,·)$, $\chi_{1120}(841,·)$, $\chi_{1120}(989,·)$, $\chi_{1120}(589,·)$, $\chi_{1120}(109,·)$, $\chi_{1120}(401,·)$, $\chi_{1120}(149,·)$, $\chi_{1120}(921,·)$, $\chi_{1120}(281,·)$, $\chi_{1120}(669,·)$, $\chi_{1120}(709,·)$, $\chi_{1120}(869,·)$, $\chi_{1120}(81,·)$, $\chi_{1120}(681,·)$, $\chi_{1120}(429,·)$, $\chi_{1120}(29,·)$, $\chi_{1120}(561,·)$, $\chi_{1120}(949,·)$, $\chi_{1120}(361,·)$, $\chi_{1120}(121,·)$, $\chi_{1120}(309,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{7} - \frac{2}{5} a^{5} - \frac{1}{5} a^{3} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{12} + \frac{1}{25} a^{11} - \frac{2}{25} a^{10} - \frac{1}{25} a^{9} - \frac{1}{25} a^{8} - \frac{2}{25} a^{7} + \frac{2}{25} a^{6} - \frac{11}{25} a^{5} + \frac{2}{5} a^{4} + \frac{6}{25} a^{3} + \frac{1}{5} a^{2} - \frac{8}{25} a + \frac{6}{25}$, $\frac{1}{25} a^{13} + \frac{2}{25} a^{11} + \frac{1}{25} a^{10} - \frac{1}{25} a^{8} - \frac{1}{25} a^{7} + \frac{2}{25} a^{6} + \frac{6}{25} a^{5} + \frac{11}{25} a^{4} - \frac{1}{25} a^{3} + \frac{12}{25} a^{2} - \frac{11}{25} a - \frac{1}{25}$, $\frac{1}{25} a^{14} - \frac{1}{25} a^{11} - \frac{1}{25} a^{10} + \frac{1}{25} a^{9} + \frac{1}{25} a^{8} + \frac{1}{25} a^{7} + \frac{2}{25} a^{6} - \frac{7}{25} a^{5} - \frac{1}{25} a^{4} - \frac{1}{5} a^{3} - \frac{1}{25} a^{2} + \frac{1}{5} a + \frac{3}{25}$, $\frac{1}{25} a^{15} - \frac{1}{25} a^{10} + \frac{3}{25} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{11}{25}$, $\frac{1}{25} a^{16} - \frac{1}{25} a^{11} - \frac{2}{25} a^{6} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{6}{25} a - \frac{1}{5}$, $\frac{1}{25} a^{17} + \frac{1}{25} a^{11} - \frac{2}{25} a^{10} - \frac{1}{25} a^{9} - \frac{1}{25} a^{8} + \frac{1}{25} a^{7} + \frac{2}{25} a^{6} + \frac{4}{25} a^{5} - \frac{9}{25} a^{3} + \frac{11}{25} a^{2} + \frac{2}{25} a - \frac{9}{25}$, $\frac{1}{125} a^{18} - \frac{1}{125} a^{17} - \frac{2}{125} a^{16} + \frac{1}{125} a^{15} - \frac{1}{125} a^{13} + \frac{1}{125} a^{12} + \frac{2}{125} a^{11} + \frac{9}{125} a^{10} + \frac{2}{25} a^{9} + \frac{3}{125} a^{8} + \frac{7}{125} a^{7} - \frac{1}{125} a^{6} + \frac{48}{125} a^{5} + \frac{1}{25} a^{4} + \frac{26}{125} a^{3} - \frac{16}{125} a^{2} - \frac{27}{125} a + \frac{26}{125}$, $\frac{1}{125} a^{19} + \frac{2}{125} a^{17} - \frac{1}{125} a^{16} + \frac{1}{125} a^{15} - \frac{1}{125} a^{14} - \frac{2}{125} a^{12} + \frac{11}{125} a^{11} - \frac{6}{125} a^{10} - \frac{12}{125} a^{9} + \frac{2}{25} a^{8} - \frac{4}{125} a^{7} - \frac{3}{125} a^{6} + \frac{28}{125} a^{5} - \frac{19}{125} a^{4} - \frac{8}{25} a^{3} + \frac{62}{125} a^{2} + \frac{49}{125} a + \frac{1}{125}$, $\frac{1}{14125} a^{20} - \frac{16}{14125} a^{19} + \frac{31}{14125} a^{18} - \frac{72}{14125} a^{17} + \frac{179}{14125} a^{16} + \frac{37}{14125} a^{15} - \frac{84}{14125} a^{14} + \frac{139}{14125} a^{13} + \frac{222}{14125} a^{12} + \frac{1061}{14125} a^{11} - \frac{23}{2825} a^{10} + \frac{377}{14125} a^{9} - \frac{1187}{14125} a^{8} - \frac{816}{14125} a^{7} - \frac{148}{14125} a^{6} + \frac{701}{2825} a^{5} - \frac{1471}{14125} a^{4} - \frac{1274}{14125} a^{3} + \frac{3048}{14125} a^{2} - \frac{11}{14125} a + \frac{3358}{14125}$, $\frac{1}{14125} a^{21} + \frac{1}{14125} a^{19} - \frac{28}{14125} a^{18} - \frac{69}{14125} a^{17} + \frac{189}{14125} a^{16} + \frac{282}{14125} a^{15} + \frac{264}{14125} a^{14} + \frac{73}{14125} a^{13} - \frac{246}{14125} a^{12} - \frac{767}{14125} a^{11} - \frac{672}{14125} a^{10} + \frac{438}{14125} a^{9} + \frac{871}{14125} a^{8} + \frac{808}{14125} a^{7} + \frac{346}{14125} a^{6} - \frac{5394}{14125} a^{5} + \frac{841}{14125} a^{4} + \frac{5942}{14125} a^{3} + \frac{506}{14125} a^{2} - \frac{923}{2825} a - \frac{1868}{14125}$, $\frac{1}{66238025277002533390533688962125} a^{22} - \frac{1162106659335267330148827579}{66238025277002533390533688962125} a^{21} + \frac{787205577583924514773035881}{66238025277002533390533688962125} a^{20} + \frac{198524358016770487433580798013}{66238025277002533390533688962125} a^{19} - \frac{15329177150006195705880661452}{13247605055400506678106737792425} a^{18} - \frac{595652658016920973513849216682}{66238025277002533390533688962125} a^{17} - \frac{213221869090260024511724092148}{66238025277002533390533688962125} a^{16} + \frac{1118338720937022107847353200023}{66238025277002533390533688962125} a^{15} - \frac{1105432371732691468056156625148}{66238025277002533390533688962125} a^{14} + \frac{237393687816168124490406155903}{13247605055400506678106737792425} a^{13} - \frac{799620177341466202270552359671}{66238025277002533390533688962125} a^{12} + \frac{464467257971984102969681132991}{13247605055400506678106737792425} a^{11} + \frac{5554308061962785793707925006884}{66238025277002533390533688962125} a^{10} - \frac{2922032983153578498217573080436}{66238025277002533390533688962125} a^{9} + \frac{204281305765758463120514352961}{13247605055400506678106737792425} a^{8} - \frac{1289736415866343773306204393482}{66238025277002533390533688962125} a^{7} + \frac{256075394399422592453053952541}{2649521011080101335621347558485} a^{6} + \frac{14817790362905135687678213128138}{66238025277002533390533688962125} a^{5} + \frac{12298830127007530156411743096553}{66238025277002533390533688962125} a^{4} - \frac{1141950194094995847411573683279}{2649521011080101335621347558485} a^{3} + \frac{11060955669983068048565093089179}{66238025277002533390533688962125} a^{2} + \frac{26372924227742006318276245444223}{66238025277002533390533688962125} a + \frac{28629329942854156781376891428619}{66238025277002533390533688962125}$, $\frac{1}{33822894691229105979768231758358611736867377875} a^{23} + \frac{3241103565069}{1352915787649164239190729270334344469474695115} a^{22} + \frac{127662745676317981690391948190344479675793}{33822894691229105979768231758358611736867377875} a^{21} + \frac{26892626348066856908308720962972349668824}{33822894691229105979768231758358611736867377875} a^{20} - \frac{9670813102679158151110624716822614591120749}{33822894691229105979768231758358611736867377875} a^{19} + \frac{3066191604091467605141023112641363053359019}{33822894691229105979768231758358611736867377875} a^{18} + \frac{606897199285351088073921694087796458060582431}{33822894691229105979768231758358611736867377875} a^{17} - \frac{529249960091751380183731136763806909799228993}{33822894691229105979768231758358611736867377875} a^{16} + \frac{102261277069280974137738384401485567222866009}{6764578938245821195953646351671722347373475575} a^{15} + \frac{619889521280197269954873070731754285631229759}{33822894691229105979768231758358611736867377875} a^{14} - \frac{115290620092599796967686727783003456924953367}{33822894691229105979768231758358611736867377875} a^{13} + \frac{6661694418313227389742569743064920407008949}{33822894691229105979768231758358611736867377875} a^{12} + \frac{39768284574039224200297714226983282975015529}{33822894691229105979768231758358611736867377875} a^{11} + \frac{2571932459057794287276374567133741702649921058}{33822894691229105979768231758358611736867377875} a^{10} + \frac{1444583282270027069602340308253747195372036073}{33822894691229105979768231758358611736867377875} a^{9} - \frac{2253642928705710576710445983770557256445696994}{33822894691229105979768231758358611736867377875} a^{8} - \frac{2377438122714285348632132561902950881148517507}{33822894691229105979768231758358611736867377875} a^{7} + \frac{839467248265318635428947891249581449794838453}{33822894691229105979768231758358611736867377875} a^{6} - \frac{3111748835038253597151679232984092130020837419}{33822894691229105979768231758358611736867377875} a^{5} - \frac{10634216607329242812157830975161436790852268104}{33822894691229105979768231758358611736867377875} a^{4} + \frac{653628938977853943395761078785291234152285839}{6764578938245821195953646351671722347373475575} a^{3} + \frac{8388500803023261232473456662291970316364499641}{33822894691229105979768231758358611736867377875} a^{2} + \frac{807662229013138421695436419775724956090220444}{6764578938245821195953646351671722347373475575} a + \frac{4787681853216985950853604694701925482927665874}{33822894691229105979768231758358611736867377875}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 78355829164159620 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{16})^+\), 6.6.1229312.1, 8.8.1342177280000.1, 12.12.49519263525896192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $24$ | R | R | $24$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{8}$ | $24$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{8}$ | $24$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{8}$ | $24$ | $24$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |