Normalized defining polynomial
\( x^{24} - 8 x^{23} - 28 x^{22} + 336 x^{21} + 162 x^{20} - 5808 x^{19} + 2656 x^{18} + 53592 x^{17} - 47961 x^{16} - 286368 x^{15} + 333348 x^{14} + 896744 x^{13} - 1254214 x^{12} - 1565456 x^{11} + 2691436 x^{10} + 1258912 x^{9} - 3185590 x^{8} - 30664 x^{7} + 1861164 x^{6} - 496600 x^{5} - 410504 x^{4} + 187912 x^{3} + 6920 x^{2} - 10912 x + 961 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6589966906506961482901542164675154259132547072=2^{93}\cdot 13^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(416=2^{5}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{416}(1,·)$, $\chi_{416}(133,·)$, $\chi_{416}(321,·)$, $\chi_{416}(9,·)$, $\chi_{416}(269,·)$, $\chi_{416}(365,·)$, $\chi_{416}(209,·)$, $\chi_{416}(341,·)$, $\chi_{416}(185,·)$, $\chi_{416}(217,·)$, $\chi_{416}(29,·)$, $\chi_{416}(261,·)$, $\chi_{416}(289,·)$, $\chi_{416}(165,·)$, $\chi_{416}(81,·)$, $\chi_{416}(105,·)$, $\chi_{416}(237,·)$, $\chi_{416}(157,·)$, $\chi_{416}(113,·)$, $\chi_{416}(53,·)$, $\chi_{416}(393,·)$, $\chi_{416}(313,·)$, $\chi_{416}(61,·)$, $\chi_{416}(373,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{31} a^{18} + \frac{12}{31} a^{17} - \frac{12}{31} a^{16} + \frac{6}{31} a^{15} - \frac{4}{31} a^{14} + \frac{6}{31} a^{13} - \frac{5}{31} a^{12} + \frac{3}{31} a^{11} + \frac{10}{31} a^{10} + \frac{10}{31} a^{9} - \frac{2}{31} a^{8} + \frac{10}{31} a^{7} - \frac{4}{31} a^{6} - \frac{4}{31} a^{4} + \frac{3}{31} a^{3} + \frac{15}{31} a^{2} - \frac{14}{31} a$, $\frac{1}{31} a^{19} - \frac{1}{31} a^{17} - \frac{5}{31} a^{16} - \frac{14}{31} a^{15} - \frac{8}{31} a^{14} - \frac{15}{31} a^{13} + \frac{1}{31} a^{12} + \frac{5}{31} a^{11} + \frac{14}{31} a^{10} + \frac{2}{31} a^{9} + \frac{3}{31} a^{8} - \frac{14}{31} a^{6} - \frac{4}{31} a^{5} - \frac{11}{31} a^{4} + \frac{10}{31} a^{3} - \frac{8}{31} a^{2} + \frac{13}{31} a$, $\frac{1}{31} a^{20} + \frac{7}{31} a^{17} + \frac{5}{31} a^{16} - \frac{2}{31} a^{15} + \frac{12}{31} a^{14} + \frac{7}{31} a^{13} - \frac{14}{31} a^{11} + \frac{12}{31} a^{10} + \frac{13}{31} a^{9} - \frac{2}{31} a^{8} - \frac{4}{31} a^{7} - \frac{8}{31} a^{6} - \frac{11}{31} a^{5} + \frac{6}{31} a^{4} - \frac{5}{31} a^{3} - \frac{3}{31} a^{2} - \frac{14}{31} a$, $\frac{1}{31} a^{21} + \frac{14}{31} a^{17} - \frac{11}{31} a^{16} + \frac{1}{31} a^{15} + \frac{4}{31} a^{14} - \frac{11}{31} a^{13} - \frac{10}{31} a^{12} - \frac{9}{31} a^{11} + \frac{5}{31} a^{10} - \frac{10}{31} a^{9} + \frac{10}{31} a^{8} + \frac{15}{31} a^{7} - \frac{14}{31} a^{6} + \frac{6}{31} a^{5} - \frac{8}{31} a^{4} + \frac{7}{31} a^{3} + \frac{5}{31} a^{2} + \frac{5}{31} a$, $\frac{1}{343085355401517213857} a^{22} - \frac{1061423076618196432}{343085355401517213857} a^{21} + \frac{5228524545630817377}{343085355401517213857} a^{20} + \frac{3381495452248125663}{343085355401517213857} a^{19} + \frac{4287430875361297358}{343085355401517213857} a^{18} + \frac{136778300441364194627}{343085355401517213857} a^{17} + \frac{28476574741605894012}{343085355401517213857} a^{16} - \frac{35577102692658343261}{343085355401517213857} a^{15} + \frac{134052574824600054663}{343085355401517213857} a^{14} + \frac{72362879129075069750}{343085355401517213857} a^{13} - \frac{56667471227966575890}{343085355401517213857} a^{12} + \frac{166881563175412251907}{343085355401517213857} a^{11} + \frac{15420107500821422500}{343085355401517213857} a^{10} + \frac{128037227916738879906}{343085355401517213857} a^{9} + \frac{3949101286339129604}{343085355401517213857} a^{8} + \frac{96701574693325741476}{343085355401517213857} a^{7} - \frac{45335956847967468287}{343085355401517213857} a^{6} - \frac{166697715313471981022}{343085355401517213857} a^{5} + \frac{162344537911752642741}{343085355401517213857} a^{4} + \frac{36887415105902921146}{343085355401517213857} a^{3} - \frac{105237575033543974491}{343085355401517213857} a^{2} - \frac{70398716965070997967}{343085355401517213857} a + \frac{1520925151283212489}{11067269529081200447}$, $\frac{1}{40629539784983919132284154143} a^{23} + \frac{19112882}{40629539784983919132284154143} a^{22} - \frac{528746179290203847200148470}{40629539784983919132284154143} a^{21} + \frac{88227533768803589373225023}{40629539784983919132284154143} a^{20} - \frac{117105676284595565487402335}{40629539784983919132284154143} a^{19} + \frac{301510126365906083451375066}{40629539784983919132284154143} a^{18} + \frac{17657243767111707207648594111}{40629539784983919132284154143} a^{17} + \frac{6228024388026326308991124022}{40629539784983919132284154143} a^{16} - \frac{9251049555956918915108229795}{40629539784983919132284154143} a^{15} - \frac{3500426252852796583274265365}{40629539784983919132284154143} a^{14} - \frac{9692587672727365969073867762}{40629539784983919132284154143} a^{13} - \frac{10851360687021205378284281808}{40629539784983919132284154143} a^{12} + \frac{13841610722631378950278561456}{40629539784983919132284154143} a^{11} + \frac{4514364542464301714338369324}{40629539784983919132284154143} a^{10} - \frac{2894774695763308611115422723}{40629539784983919132284154143} a^{9} + \frac{815917342128114705281108679}{40629539784983919132284154143} a^{8} - \frac{2540478801831906487241286292}{40629539784983919132284154143} a^{7} + \frac{10158658957730254820274277144}{40629539784983919132284154143} a^{6} - \frac{7717089357953457412623309539}{40629539784983919132284154143} a^{5} + \frac{17357131929996413935336434214}{40629539784983919132284154143} a^{4} + \frac{2665466380654974878232155908}{40629539784983919132284154143} a^{3} - \frac{10252966129462971310513796982}{40629539784983919132284154143} a^{2} - \frac{241343232639474142621402883}{1310630315644642552654327553} a + \frac{8650180776553455332566068}{42278397278859437182397663}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2183476337861903.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 3.3.169.1, \(\Q(\zeta_{16})^+\), 6.6.14623232.1, \(\Q(\zeta_{32})^+\), 12.12.7007073538075000832.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $24$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ | $24$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | $24$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{24}$ | $24$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{3}$ | $24$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 13 | Data not computed | ||||||