Normalized defining polynomial
\( x^{24} - 5 x^{23} - 80 x^{22} + 391 x^{21} + 2601 x^{20} - 12139 x^{19} - 46313 x^{18} + 198718 x^{17} + 505390 x^{16} - 1895700 x^{15} - 3523495 x^{14} + 10918179 x^{13} + 15636940 x^{12} - 37945411 x^{11} - 42438075 x^{10} + 77240969 x^{9} + 65224490 x^{8} - 86662186 x^{7} - 50769407 x^{6} + 48248857 x^{5} + 18427354 x^{4} - 10867585 x^{3} - 3123105 x^{2} + 786453 x + 185809 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(560577988928339833496317505446258210551025390625=5^{12}\cdot 7^{16}\cdot 17^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(595=5\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{595}(256,·)$, $\chi_{595}(1,·)$, $\chi_{595}(389,·)$, $\chi_{595}(134,·)$, $\chi_{595}(519,·)$, $\chi_{595}(9,·)$, $\chi_{595}(526,·)$, $\chi_{595}(144,·)$, $\chi_{595}(529,·)$, $\chi_{595}(274,·)$, $\chi_{595}(86,·)$, $\chi_{595}(219,·)$, $\chi_{595}(506,·)$, $\chi_{595}(16,·)$, $\chi_{595}(484,·)$, $\chi_{595}(421,·)$, $\chi_{595}(81,·)$, $\chi_{595}(361,·)$, $\chi_{595}(106,·)$, $\chi_{595}(359,·)$, $\chi_{595}(179,·)$, $\chi_{595}(569,·)$, $\chi_{595}(186,·)$, $\chi_{595}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{13} a^{10} + \frac{5}{13} a^{9} - \frac{3}{13} a^{8} + \frac{6}{13} a^{7} - \frac{4}{13} a^{6} + \frac{5}{13} a^{5} - \frac{2}{13} a^{4} - \frac{1}{13} a^{3} - \frac{2}{13} a^{2} - \frac{5}{13} a$, $\frac{1}{13} a^{11} - \frac{2}{13} a^{9} - \frac{5}{13} a^{8} + \frac{5}{13} a^{7} - \frac{1}{13} a^{6} - \frac{1}{13} a^{5} - \frac{4}{13} a^{4} + \frac{3}{13} a^{3} + \frac{5}{13} a^{2} - \frac{1}{13} a$, $\frac{1}{13} a^{12} + \frac{5}{13} a^{9} - \frac{1}{13} a^{8} - \frac{2}{13} a^{7} + \frac{4}{13} a^{6} + \frac{6}{13} a^{5} - \frac{1}{13} a^{4} + \frac{3}{13} a^{3} - \frac{5}{13} a^{2} + \frac{3}{13} a$, $\frac{1}{13} a^{13} - \frac{1}{13} a$, $\frac{1}{13} a^{14} - \frac{1}{13} a^{2}$, $\frac{1}{13} a^{15} - \frac{1}{13} a^{3}$, $\frac{1}{13} a^{16} - \frac{1}{13} a^{4}$, $\frac{1}{13} a^{17} - \frac{1}{13} a^{5}$, $\frac{1}{169} a^{18} - \frac{2}{169} a^{17} + \frac{4}{169} a^{16} - \frac{1}{169} a^{15} - \frac{5}{169} a^{14} - \frac{6}{169} a^{13} - \frac{4}{169} a^{12} - \frac{4}{169} a^{10} + \frac{64}{169} a^{9} + \frac{81}{169} a^{8} + \frac{10}{169} a^{7} + \frac{25}{169} a^{6} - \frac{29}{169} a^{5} + \frac{47}{169} a^{4} + \frac{71}{169} a^{3} + \frac{59}{169} a^{2} + \frac{53}{169} a - \frac{4}{13}$, $\frac{1}{169} a^{19} - \frac{6}{169} a^{16} + \frac{6}{169} a^{15} - \frac{3}{169} a^{14} - \frac{3}{169} a^{13} + \frac{5}{169} a^{12} - \frac{4}{169} a^{11} + \frac{4}{169} a^{10} + \frac{14}{169} a^{9} - \frac{23}{169} a^{8} + \frac{45}{169} a^{7} - \frac{57}{169} a^{6} - \frac{24}{169} a^{5} - \frac{69}{169} a^{4} - \frac{59}{169} a^{3} + \frac{28}{169} a^{2} + \frac{2}{169} a + \frac{5}{13}$, $\frac{1}{169} a^{20} - \frac{6}{169} a^{17} + \frac{6}{169} a^{16} - \frac{3}{169} a^{15} - \frac{3}{169} a^{14} + \frac{5}{169} a^{13} - \frac{4}{169} a^{12} + \frac{4}{169} a^{11} + \frac{1}{169} a^{10} + \frac{81}{169} a^{9} + \frac{84}{169} a^{8} + \frac{34}{169} a^{7} + \frac{28}{169} a^{6} + \frac{35}{169} a^{5} - \frac{33}{169} a^{4} + \frac{41}{169} a^{3} + \frac{28}{169} a^{2} - \frac{3}{13} a$, $\frac{1}{7943} a^{21} + \frac{3}{7943} a^{20} + \frac{19}{7943} a^{19} - \frac{22}{7943} a^{18} - \frac{71}{7943} a^{17} + \frac{149}{7943} a^{16} - \frac{25}{7943} a^{15} + \frac{45}{7943} a^{14} + \frac{154}{7943} a^{13} - \frac{226}{7943} a^{12} + \frac{184}{7943} a^{11} - \frac{101}{7943} a^{10} - \frac{62}{169} a^{9} - \frac{992}{7943} a^{8} - \frac{1502}{7943} a^{7} + \frac{716}{7943} a^{6} - \frac{1259}{7943} a^{5} + \frac{2507}{7943} a^{4} - \frac{9}{47} a^{3} - \frac{1693}{7943} a^{2} - \frac{1122}{7943} a + \frac{224}{611}$, $\frac{1}{103259} a^{22} - \frac{4}{103259} a^{21} - \frac{2}{103259} a^{20} - \frac{108}{103259} a^{19} - \frac{11}{103259} a^{18} - \frac{2832}{103259} a^{17} - \frac{2337}{103259} a^{16} + \frac{2429}{103259} a^{15} + \frac{2001}{103259} a^{14} - \frac{3936}{103259} a^{13} - \frac{3733}{103259} a^{12} - \frac{2188}{103259} a^{11} - \frac{1032}{103259} a^{10} + \frac{3661}{103259} a^{9} - \frac{27693}{103259} a^{8} + \frac{25236}{103259} a^{7} + \frac{2142}{103259} a^{6} + \frac{39191}{103259} a^{5} + \frac{28870}{103259} a^{4} + \frac{8672}{103259} a^{3} - \frac{24662}{103259} a^{2} + \frac{19931}{103259} a + \frac{2098}{7943}$, $\frac{1}{42452831516767208244233762645001469965867290689846556771} a^{23} - \frac{100866017329493877317027302569376968956858698378375}{42452831516767208244233762645001469965867290689846556771} a^{22} - \frac{39269375235818931499279226821912115411675457091879}{42452831516767208244233762645001469965867290689846556771} a^{21} + \frac{77435539038837208380946882299577700869856706421444623}{42452831516767208244233762645001469965867290689846556771} a^{20} - \frac{7934046598178192088888113738105753461895438687507195}{3265602424366708326479520203461651535835945437680504367} a^{19} - \frac{384087665456526326005287081219634714244146840352744}{177626910111996687214367207719671422451327576108144589} a^{18} + \frac{813609469433984263239069858748123942100642230901796724}{42452831516767208244233762645001469965867290689846556771} a^{17} - \frac{1491652928249930605978889516295300151201220517885537743}{42452831516767208244233762645001469965867290689846556771} a^{16} - \frac{1543204801814983753276966297313566265250153689769105105}{42452831516767208244233762645001469965867290689846556771} a^{15} + \frac{1410314027832414952614238318853929140501965529776722221}{42452831516767208244233762645001469965867290689846556771} a^{14} - \frac{16763406446773914275945787865839440394472953056216363}{42452831516767208244233762645001469965867290689846556771} a^{13} - \frac{1278362417820047378442097887341518057108255873660759973}{42452831516767208244233762645001469965867290689846556771} a^{12} - \frac{787192847926371740334499889919487473383081259596224721}{42452831516767208244233762645001469965867290689846556771} a^{11} + \frac{226398032451561910640508728581209800745035813061252838}{42452831516767208244233762645001469965867290689846556771} a^{10} + \frac{15910228086880988441014634696475244751676207573327431895}{42452831516767208244233762645001469965867290689846556771} a^{9} + \frac{9295143430598985523800259574301517060731655576799598256}{42452831516767208244233762645001469965867290689846556771} a^{8} + \frac{13862771340781025524292086579527190222358121487448010695}{42452831516767208244233762645001469965867290689846556771} a^{7} + \frac{19803982033746223283998544674213365113901058621083815144}{42452831516767208244233762645001469965867290689846556771} a^{6} - \frac{15683050841998733392645318820211919662070863211088836983}{42452831516767208244233762645001469965867290689846556771} a^{5} + \frac{3705327876653672353265638002596480957528285876136523218}{42452831516767208244233762645001469965867290689846556771} a^{4} + \frac{5961849099661521580119224024104239340150898016448375156}{42452831516767208244233762645001469965867290689846556771} a^{3} - \frac{2026680761410021316865818198324694442853072243120132588}{42452831516767208244233762645001469965867290689846556771} a^{2} + \frac{10953119617549966635704600362284988261374497714341800518}{42452831516767208244233762645001469965867290689846556771} a - \frac{435179897702275547052768655880173995684400981941518848}{3265602424366708326479520203461651535835945437680504367}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32766500146226612 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.4.4913.1, 6.6.11796113.1, 8.8.256461670625.1, 12.12.683635509017782097.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | $24$ | R | R | $24$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{24}$ | R | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ | $24$ | $24$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 17 | Data not computed | ||||||