Properties

Label 24.24.5106705043...0000.1
Degree $24$
Signature $[24, 0]$
Discriminant $2^{24}\cdot 5^{18}\cdot 7^{20}$
Root discriminant $33.85$
Ramified primes $2, 5, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times C_{12}$ (as 24T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -48, 0, 628, 0, -3498, 0, 10032, 0, -16511, 0, 16757, 0, -10949, 0, 4692, 0, -1311, 0, 230, 0, -23, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 23*x^22 + 230*x^20 - 1311*x^18 + 4692*x^16 - 10949*x^14 + 16757*x^12 - 16511*x^10 + 10032*x^8 - 3498*x^6 + 628*x^4 - 48*x^2 + 1)
 
gp: K = bnfinit(x^24 - 23*x^22 + 230*x^20 - 1311*x^18 + 4692*x^16 - 10949*x^14 + 16757*x^12 - 16511*x^10 + 10032*x^8 - 3498*x^6 + 628*x^4 - 48*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{24} - 23 x^{22} + 230 x^{20} - 1311 x^{18} + 4692 x^{16} - 10949 x^{14} + 16757 x^{12} - 16511 x^{10} + 10032 x^{8} - 3498 x^{6} + 628 x^{4} - 48 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[24, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5106705043047168064000000000000000000=2^{24}\cdot 5^{18}\cdot 7^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.85$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(140=2^{2}\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{140}(1,·)$, $\chi_{140}(131,·)$, $\chi_{140}(97,·)$, $\chi_{140}(9,·)$, $\chi_{140}(139,·)$, $\chi_{140}(13,·)$, $\chi_{140}(17,·)$, $\chi_{140}(19,·)$, $\chi_{140}(23,·)$, $\chi_{140}(29,·)$, $\chi_{140}(31,·)$, $\chi_{140}(107,·)$, $\chi_{140}(33,·)$, $\chi_{140}(67,·)$, $\chi_{140}(123,·)$, $\chi_{140}(81,·)$, $\chi_{140}(43,·)$, $\chi_{140}(109,·)$, $\chi_{140}(111,·)$, $\chi_{140}(117,·)$, $\chi_{140}(73,·)$, $\chi_{140}(121,·)$, $\chi_{140}(59,·)$, $\chi_{140}(127,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $23$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 33400075541.82508 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{12}$ (as 24T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2\times C_{12}$
Character table for $C_2\times C_{12}$ is not computed

Intermediate fields

\(\Q(\sqrt{35}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{5}, \sqrt{7})\), 4.4.6125.1, \(\Q(\zeta_{20})^+\), 6.6.134456000.1, 6.6.300125.1, \(\Q(\zeta_{28})^+\), 8.8.9604000000.1, 12.12.18078415936000000.1, \(\Q(\zeta_{35})^+\), 12.12.46118408000000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ R R ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{8}$ ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
7Data not computed