Normalized defining polynomial
\( x^{24} - 5 x^{23} - 93 x^{22} + 498 x^{21} + 3404 x^{20} - 20333 x^{19} - 61013 x^{18} + 441083 x^{17} + 513767 x^{16} - 5531777 x^{15} - 779357 x^{14} + 41207184 x^{13} - 19336098 x^{12} - 182664671 x^{11} + 153613396 x^{10} + 477755253 x^{9} - 508719376 x^{8} - 726080555 x^{7} + 857890224 x^{6} + 619882563 x^{5} - 731825889 x^{4} - 273937411 x^{3} + 269369498 x^{2} + 49495809 x - 21745039 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(50259070254551029841638058950925276817543684567377=17^{21}\cdot 31^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $117.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(527=17\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{527}(1,·)$, $\chi_{527}(67,·)$, $\chi_{527}(373,·)$, $\chi_{527}(94,·)$, $\chi_{527}(273,·)$, $\chi_{527}(404,·)$, $\chi_{527}(149,·)$, $\chi_{527}(342,·)$, $\chi_{527}(87,·)$, $\chi_{527}(280,·)$, $\chi_{527}(25,·)$, $\chi_{527}(222,·)$, $\chi_{527}(32,·)$, $\chi_{527}(98,·)$, $\chi_{527}(36,·)$, $\chi_{527}(366,·)$, $\chi_{527}(304,·)$, $\chi_{527}(497,·)$, $\chi_{527}(242,·)$, $\chi_{527}(501,·)$, $\chi_{527}(118,·)$, $\chi_{527}(315,·)$, $\chi_{527}(253,·)$, $\chi_{527}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{20} - \frac{1}{4} a^{19} - \frac{1}{4} a^{18} - \frac{1}{4} a^{17} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{21} - \frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{22} - \frac{1}{4} a^{18} - \frac{1}{4} a^{17} - \frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{382375526843287753703813266458917075803640997326112980409642912143802578254646066012} a^{23} + \frac{5775421512055975691246498621457321283035012552916056568956806728473617526355221839}{382375526843287753703813266458917075803640997326112980409642912143802578254646066012} a^{22} - \frac{7774166058276288935900802159685526970154264387554555829255122935931932273874968047}{191187763421643876851906633229458537901820498663056490204821456071901289127323033006} a^{21} - \frac{11956488641252270346463183168679199621302279701478708541942156515356233959238188477}{382375526843287753703813266458917075803640997326112980409642912143802578254646066012} a^{20} + \frac{45965834467558326464837374827121261939803912901206794343161899439486324495081898655}{191187763421643876851906633229458537901820498663056490204821456071901289127323033006} a^{19} + \frac{94590604486346950303949572724852282563073145845993399530014930239547785205419892025}{382375526843287753703813266458917075803640997326112980409642912143802578254646066012} a^{18} + \frac{15252280266314232915026758210567467525469680179116681051296376509090978609072765197}{191187763421643876851906633229458537901820498663056490204821456071901289127323033006} a^{17} - \frac{67208917159635789813247242176286395936867458780587857330640151225787761251268405655}{382375526843287753703813266458917075803640997326112980409642912143802578254646066012} a^{16} + \frac{35884916248395225688417521094353925424546137029214720241659523365175624748696285105}{191187763421643876851906633229458537901820498663056490204821456071901289127323033006} a^{15} + \frac{729942497105196864114301036902139878582329089130508200871831787544114010428543237}{191187763421643876851906633229458537901820498663056490204821456071901289127323033006} a^{14} - \frac{25563474486753316909874992710654506532324902865489153266248168338602088582527497959}{191187763421643876851906633229458537901820498663056490204821456071901289127323033006} a^{13} + \frac{54853659887394014651344932674596195729064399347422428074456120509002322876967242273}{382375526843287753703813266458917075803640997326112980409642912143802578254646066012} a^{12} - \frac{39576215018103384178133818225450230275877599543989419948337313689317217958372951410}{95593881710821938425953316614729268950910249331528245102410728035950644563661516503} a^{11} - \frac{38167000311356399562738103777771827013405295387525330020542262589269002176803132973}{191187763421643876851906633229458537901820498663056490204821456071901289127323033006} a^{10} - \frac{85326952178767366315116073833035376615114971180412170021671363380429531930232865969}{382375526843287753703813266458917075803640997326112980409642912143802578254646066012} a^{9} + \frac{125916063413938437623234985627896610450240887883654181827986945119249523757231246259}{382375526843287753703813266458917075803640997326112980409642912143802578254646066012} a^{8} + \frac{183889387114756964534377228871995834381062762926393983136646800094214418937820287909}{382375526843287753703813266458917075803640997326112980409642912143802578254646066012} a^{7} - \frac{28213754544203191218409691105554352625589237917422028448009547385254812138025576941}{382375526843287753703813266458917075803640997326112980409642912143802578254646066012} a^{6} - \frac{177676501781099448009404424579671089938698349103491853036463972502831181261342105415}{382375526843287753703813266458917075803640997326112980409642912143802578254646066012} a^{5} - \frac{26564952424232381787942763828296635015807566289083027174265892041611410236517913189}{191187763421643876851906633229458537901820498663056490204821456071901289127323033006} a^{4} + \frac{69424616383616045829380817080296908833154240767306688672071121111953749018975814215}{191187763421643876851906633229458537901820498663056490204821456071901289127323033006} a^{3} + \frac{17795115817859300753543509798313667804800998581082539908451914652479383234763268729}{191187763421643876851906633229458537901820498663056490204821456071901289127323033006} a^{2} - \frac{119254196670268453157825285372322218535160697020601959043286000566263876783900402285}{382375526843287753703813266458917075803640997326112980409642912143802578254646066012} a + \frac{156428090990971354365887699474145834433768971486712207925374918807928237095796315429}{382375526843287753703813266458917075803640997326112980409642912143802578254646066012}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161327439996204220 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 3.3.961.1, 4.4.4913.1, 6.6.4537258673.1, \(\Q(\zeta_{17})^+\), 12.12.101142537013451510924177.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{6}$ | $24$ | $24$ | $24$ | $24$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ | R | $24$ | $24$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 31 | Data not computed | ||||||