Normalized defining polynomial
\( x^{24} - x^{23} - 46 x^{22} + 41 x^{21} + 861 x^{20} - 677 x^{19} - 8543 x^{18} + 5845 x^{17} + 49149 x^{16} - 28796 x^{15} - 168896 x^{14} + 82706 x^{13} + 345815 x^{12} - 136069 x^{11} - 410227 x^{10} + 124640 x^{9} + 264241 x^{8} - 62318 x^{7} - 82152 x^{6} + 16749 x^{5} + 10541 x^{4} - 1872 x^{3} - 298 x^{2} + 6 x + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4963064143419831996986398968091856144361331873=97^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(97\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{97}(64,·)$, $\chi_{97}(1,·)$, $\chi_{97}(4,·)$, $\chi_{97}(6,·)$, $\chi_{97}(9,·)$, $\chi_{97}(75,·)$, $\chi_{97}(16,·)$, $\chi_{97}(81,·)$, $\chi_{97}(22,·)$, $\chi_{97}(24,·)$, $\chi_{97}(91,·)$, $\chi_{97}(93,·)$, $\chi_{97}(96,·)$, $\chi_{97}(33,·)$, $\chi_{97}(35,·)$, $\chi_{97}(36,·)$, $\chi_{97}(43,·)$, $\chi_{97}(47,·)$, $\chi_{97}(50,·)$, $\chi_{97}(54,·)$, $\chi_{97}(73,·)$, $\chi_{97}(88,·)$, $\chi_{97}(61,·)$, $\chi_{97}(62,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{401579} a^{22} - \frac{163649}{401579} a^{21} - \frac{34707}{401579} a^{20} - \frac{33257}{401579} a^{19} - \frac{148043}{401579} a^{18} + \frac{77852}{401579} a^{17} - \frac{46466}{401579} a^{16} - \frac{41391}{401579} a^{15} - \frac{177636}{401579} a^{14} + \frac{55241}{401579} a^{13} - \frac{157643}{401579} a^{12} - \frac{53337}{401579} a^{11} - \frac{35468}{401579} a^{10} + \frac{109718}{401579} a^{9} - \frac{5522}{401579} a^{8} + \frac{134209}{401579} a^{7} - \frac{72609}{401579} a^{6} - \frac{37178}{401579} a^{5} + \frac{50262}{401579} a^{4} - \frac{20000}{401579} a^{3} - \frac{99902}{401579} a^{2} + \frac{126996}{401579} a + \frac{6060}{401579}$, $\frac{1}{602107757552888416617470834580769} a^{23} + \frac{485870573994694554143799947}{602107757552888416617470834580769} a^{22} - \frac{290321139723157034591802907502448}{602107757552888416617470834580769} a^{21} - \frac{158415383305902690664909621586981}{602107757552888416617470834580769} a^{20} + \frac{180873647236376036438726473336057}{602107757552888416617470834580769} a^{19} - \frac{197714878455243678920168353402056}{602107757552888416617470834580769} a^{18} + \frac{129051660503981776535212584360797}{602107757552888416617470834580769} a^{17} + \frac{202296723749712713640577822064857}{602107757552888416617470834580769} a^{16} - \frac{150756920867361518594838720587445}{602107757552888416617470834580769} a^{15} + \frac{135326930495021978465985246401705}{602107757552888416617470834580769} a^{14} - \frac{146985846104732089235845122120668}{602107757552888416617470834580769} a^{13} - \frac{30539250182135167860537906968189}{602107757552888416617470834580769} a^{12} - \frac{143334515933073139522922620367884}{602107757552888416617470834580769} a^{11} - \frac{32924807673089632680995250328111}{602107757552888416617470834580769} a^{10} + \frac{211733703598660784307220061906494}{602107757552888416617470834580769} a^{9} + \frac{155612492331568026800795271910722}{602107757552888416617470834580769} a^{8} + \frac{194535216966450513456922175487770}{602107757552888416617470834580769} a^{7} - \frac{46836478076866204814641551280333}{602107757552888416617470834580769} a^{6} + \frac{128181906342315038489506051530816}{602107757552888416617470834580769} a^{5} + \frac{22589857625101257062329987548270}{602107757552888416617470834580769} a^{4} - \frac{96091240828597106147852579566397}{602107757552888416617470834580769} a^{3} - \frac{36892169468035958602779326306507}{602107757552888416617470834580769} a^{2} + \frac{60664490207825398256567459642037}{602107757552888416617470834580769} a + \frac{242180827022692753700189904595553}{602107757552888416617470834580769}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1104768408470740.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 3.3.9409.1, 4.4.912673.1, 6.6.8587340257.1, 8.8.80798284478113.1, 12.12.7153014030880804126753.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ | $24$ | $24$ | ${\href{/LocalNumberField/11.12.0.1}{12} }^{2}$ | $24$ | $24$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{3}$ | $24$ | $24$ | ${\href{/LocalNumberField/31.12.0.1}{12} }^{2}$ | $24$ | $24$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | $24$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 97 | Data not computed | ||||||