Normalized defining polynomial
\( x^{24} - 5 x^{23} - 45 x^{22} + 222 x^{21} + 863 x^{20} - 4070 x^{19} - 9167 x^{18} + 40211 x^{17} + 58160 x^{16} - 235712 x^{15} - 220835 x^{14} + 853425 x^{13} + 474876 x^{12} - 1920029 x^{11} - 478385 x^{10} + 2610189 x^{9} + 1574 x^{8} - 1994333 x^{7} + 378789 x^{6} + 737208 x^{5} - 236349 x^{4} - 93592 x^{3} + 37133 x^{2} + 417 x - 307 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45974920386302621489514295371768554558532497=13^{16}\cdot 17^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(221=13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{221}(1,·)$, $\chi_{221}(66,·)$, $\chi_{221}(196,·)$, $\chi_{221}(9,·)$, $\chi_{221}(183,·)$, $\chi_{221}(16,·)$, $\chi_{221}(81,·)$, $\chi_{221}(87,·)$, $\chi_{221}(152,·)$, $\chi_{221}(217,·)$, $\chi_{221}(157,·)$, $\chi_{221}(94,·)$, $\chi_{221}(144,·)$, $\chi_{221}(35,·)$, $\chi_{221}(100,·)$, $\chi_{221}(42,·)$, $\chi_{221}(172,·)$, $\chi_{221}(178,·)$, $\chi_{221}(53,·)$, $\chi_{221}(118,·)$, $\chi_{221}(55,·)$, $\chi_{221}(120,·)$, $\chi_{221}(185,·)$, $\chi_{221}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{103} a^{22} - \frac{26}{103} a^{21} - \frac{47}{103} a^{20} + \frac{7}{103} a^{19} + \frac{1}{103} a^{18} + \frac{4}{103} a^{17} - \frac{14}{103} a^{16} - \frac{3}{103} a^{15} - \frac{25}{103} a^{14} - \frac{42}{103} a^{13} - \frac{47}{103} a^{12} - \frac{29}{103} a^{11} + \frac{43}{103} a^{10} + \frac{48}{103} a^{9} - \frac{8}{103} a^{8} - \frac{11}{103} a^{7} + \frac{9}{103} a^{6} + \frac{24}{103} a^{5} - \frac{22}{103} a^{4} + \frac{16}{103} a^{3} + \frac{14}{103} a^{2} + \frac{37}{103} a + \frac{50}{103}$, $\frac{1}{25886899426964038960657910078693150799084693064272557} a^{23} + \frac{75810506467272955447271510863312815768149824038349}{25886899426964038960657910078693150799084693064272557} a^{22} - \frac{3941686623983198338640999427207790475732083863113401}{25886899426964038960657910078693150799084693064272557} a^{21} - \frac{11472792806845960677347013092166489144505707344637839}{25886899426964038960657910078693150799084693064272557} a^{20} - \frac{8057722908081837346222587159112404476712589805610565}{25886899426964038960657910078693150799084693064272557} a^{19} - \frac{5526287018916897567461107351280282103785584823944138}{25886899426964038960657910078693150799084693064272557} a^{18} - \frac{3036696800095890006724565774507443482950328788991327}{25886899426964038960657910078693150799084693064272557} a^{17} + \frac{6664262588674702664322364354554604887176080345255194}{25886899426964038960657910078693150799084693064272557} a^{16} - \frac{472361254982043616787164425079082093613065554304690}{25886899426964038960657910078693150799084693064272557} a^{15} + \frac{606176635898567787030265158501538397483749340690307}{25886899426964038960657910078693150799084693064272557} a^{14} - \frac{3948018926696172614951829428724114465698541871240457}{25886899426964038960657910078693150799084693064272557} a^{13} - \frac{10046310849663443959471424217573115127562942124204970}{25886899426964038960657910078693150799084693064272557} a^{12} + \frac{4731170423456889309582891924077708262487743783144922}{25886899426964038960657910078693150799084693064272557} a^{11} + \frac{12374660069239606226369929828966724289884698372022479}{25886899426964038960657910078693150799084693064272557} a^{10} - \frac{9922865665240451614964071828025719563079009009898993}{25886899426964038960657910078693150799084693064272557} a^{9} + \frac{1212705653167904336921584392185243413431202656108436}{25886899426964038960657910078693150799084693064272557} a^{8} + \frac{990243214944977826658047167890137308184642851465969}{25886899426964038960657910078693150799084693064272557} a^{7} - \frac{12597786091582285764158953352099555035223462667071934}{25886899426964038960657910078693150799084693064272557} a^{6} - \frac{7532029702756924925668979019765344974737428399388359}{25886899426964038960657910078693150799084693064272557} a^{5} - \frac{3658053890759377926002529232764610176963065531059192}{25886899426964038960657910078693150799084693064272557} a^{4} + \frac{1595698899785817765650773978568128682079702442568793}{25886899426964038960657910078693150799084693064272557} a^{3} + \frac{2755878498813868341553118275954591793766708682057640}{25886899426964038960657910078693150799084693064272557} a^{2} - \frac{11560691640307718794981544285402236946541580341128380}{25886899426964038960657910078693150799084693064272557} a + \frac{4594015336012596599553887449116333545000881207424469}{25886899426964038960657910078693150799084693064272557}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 116275529261718.16 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 3.3.169.1, 4.4.4913.1, 6.6.140320193.1, \(\Q(\zeta_{17})^+\), 12.12.96735773996756764337.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{3}$ | $24$ | $24$ | R | R | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | $24$ | $24$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{3}$ | $24$ | $24$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 17 | Data not computed | ||||||