Properties

Label 24.24.4167243323...5625.1
Degree $24$
Signature $[24, 0]$
Discriminant $3^{12}\cdot 5^{12}\cdot 13^{22}$
Root discriminant $40.66$
Ramified primes $3, 5, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times C_{12}$ (as 24T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -12, -180, 172, 3541, 1711, -19591, -13356, 53243, 34947, -84021, -46487, 81925, 34917, -50091, -15174, 18936, 3762, -4277, -515, 551, 36, -37, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 - x^23 - 37*x^22 + 36*x^21 + 551*x^20 - 515*x^19 - 4277*x^18 + 3762*x^17 + 18936*x^16 - 15174*x^15 - 50091*x^14 + 34917*x^13 + 81925*x^12 - 46487*x^11 - 84021*x^10 + 34947*x^9 + 53243*x^8 - 13356*x^7 - 19591*x^6 + 1711*x^5 + 3541*x^4 + 172*x^3 - 180*x^2 - 12*x + 1)
 
gp: K = bnfinit(x^24 - x^23 - 37*x^22 + 36*x^21 + 551*x^20 - 515*x^19 - 4277*x^18 + 3762*x^17 + 18936*x^16 - 15174*x^15 - 50091*x^14 + 34917*x^13 + 81925*x^12 - 46487*x^11 - 84021*x^10 + 34947*x^9 + 53243*x^8 - 13356*x^7 - 19591*x^6 + 1711*x^5 + 3541*x^4 + 172*x^3 - 180*x^2 - 12*x + 1, 1)
 

Normalized defining polynomial

\( x^{24} - x^{23} - 37 x^{22} + 36 x^{21} + 551 x^{20} - 515 x^{19} - 4277 x^{18} + 3762 x^{17} + 18936 x^{16} - 15174 x^{15} - 50091 x^{14} + 34917 x^{13} + 81925 x^{12} - 46487 x^{11} - 84021 x^{10} + 34947 x^{9} + 53243 x^{8} - 13356 x^{7} - 19591 x^{6} + 1711 x^{5} + 3541 x^{4} + 172 x^{3} - 180 x^{2} - 12 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[24, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(416724332309376501938461264338134765625=3^{12}\cdot 5^{12}\cdot 13^{22}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.66$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(195=3\cdot 5\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{195}(64,·)$, $\chi_{195}(1,·)$, $\chi_{195}(11,·)$, $\chi_{195}(4,·)$, $\chi_{195}(71,·)$, $\chi_{195}(139,·)$, $\chi_{195}(79,·)$, $\chi_{195}(16,·)$, $\chi_{195}(149,·)$, $\chi_{195}(86,·)$, $\chi_{195}(89,·)$, $\chi_{195}(94,·)$, $\chi_{195}(161,·)$, $\chi_{195}(164,·)$, $\chi_{195}(166,·)$, $\chi_{195}(41,·)$, $\chi_{195}(44,·)$, $\chi_{195}(176,·)$, $\chi_{195}(49,·)$, $\chi_{195}(181,·)$, $\chi_{195}(119,·)$, $\chi_{195}(121,·)$, $\chi_{195}(59,·)$, $\chi_{195}(61,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{79} a^{21} - \frac{6}{79} a^{20} - \frac{32}{79} a^{19} - \frac{14}{79} a^{18} + \frac{26}{79} a^{17} + \frac{7}{79} a^{16} - \frac{1}{79} a^{15} - \frac{1}{79} a^{14} + \frac{14}{79} a^{13} - \frac{7}{79} a^{12} - \frac{39}{79} a^{11} - \frac{10}{79} a^{10} - \frac{8}{79} a^{9} - \frac{4}{79} a^{8} - \frac{16}{79} a^{7} + \frac{8}{79} a^{6} - \frac{20}{79} a^{5} - \frac{33}{79} a^{4} - \frac{2}{79} a^{3} + \frac{29}{79} a^{2} + \frac{9}{79}$, $\frac{1}{79} a^{22} + \frac{11}{79} a^{20} + \frac{31}{79} a^{19} + \frac{21}{79} a^{18} + \frac{5}{79} a^{17} - \frac{38}{79} a^{16} - \frac{7}{79} a^{15} + \frac{8}{79} a^{14} - \frac{2}{79} a^{13} - \frac{2}{79} a^{12} - \frac{7}{79} a^{11} + \frac{11}{79} a^{10} + \frac{27}{79} a^{9} + \frac{39}{79} a^{8} - \frac{9}{79} a^{7} + \frac{28}{79} a^{6} + \frac{5}{79} a^{5} + \frac{37}{79} a^{4} + \frac{17}{79} a^{3} + \frac{16}{79} a^{2} + \frac{9}{79} a - \frac{25}{79}$, $\frac{1}{13460641917638295063947537} a^{23} + \frac{20646348816497656155988}{13460641917638295063947537} a^{22} + \frac{8889193458833009151937}{13460641917638295063947537} a^{21} + \frac{5786642062920334141316583}{13460641917638295063947537} a^{20} - \frac{107756855684354444857788}{253974375804496133282029} a^{19} + \frac{5640475635450590784053870}{13460641917638295063947537} a^{18} - \frac{6404365649507561270316431}{13460641917638295063947537} a^{17} + \frac{1595642365223327210359748}{13460641917638295063947537} a^{16} + \frac{207032020716775086794309}{13460641917638295063947537} a^{15} + \frac{1474352310127376343555613}{13460641917638295063947537} a^{14} - \frac{67572179969070894754697}{253974375804496133282029} a^{13} - \frac{14183632664908395351571}{34603192590329807362333} a^{12} - \frac{3690112599666086890366905}{13460641917638295063947537} a^{11} + \frac{523569968835307609570118}{13460641917638295063947537} a^{10} + \frac{2342430744206253647323575}{13460641917638295063947537} a^{9} + \frac{885717411599243525104291}{13460641917638295063947537} a^{8} - \frac{5357584092632817025638274}{13460641917638295063947537} a^{7} + \frac{5764808345900927230121792}{13460641917638295063947537} a^{6} + \frac{2933704594881301379591467}{13460641917638295063947537} a^{5} + \frac{5516059352536196609025201}{13460641917638295063947537} a^{4} + \frac{1031278658942323842586715}{13460641917638295063947537} a^{3} + \frac{1162356660211931731270697}{13460641917638295063947537} a^{2} - \frac{6490353566159683344886421}{13460641917638295063947537} a - \frac{5824605622886034144242912}{13460641917638295063947537}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $23$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 340731139253.48956 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{12}$ (as 24T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2\times C_{12}$
Character table for $C_2\times C_{12}$ is not computed

Intermediate fields

\(\Q(\sqrt{65}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{5}) \), 3.3.169.1, \(\Q(\sqrt{5}, \sqrt{13})\), 4.4.494325.1, 4.4.19773.1, 6.6.46411625.1, \(\Q(\zeta_{13})^+\), 6.6.3570125.1, 8.8.244357205625.1, 12.12.2154038935140625.1, 12.12.20413826988327703125.1, \(\Q(\zeta_{39})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ R R ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/11.12.0.1}{12} }^{2}$ R ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/41.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.12.6.2$x^{12} + 108 x^{6} - 243 x^{2} + 2916$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
3.12.6.2$x^{12} + 108 x^{6} - 243 x^{2} + 2916$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
13Data not computed