Normalized defining polynomial
\( x^{24} - x^{23} - 71 x^{22} - 29 x^{21} + 2080 x^{20} + 3352 x^{19} - 29841 x^{18} - 83107 x^{17} + 190055 x^{16} + 909918 x^{15} - 76005 x^{14} - 4718726 x^{13} - 4976758 x^{12} + 10129791 x^{11} + 22903362 x^{10} + 199317 x^{9} - 36699395 x^{8} - 28704066 x^{7} + 14798722 x^{6} + 30078720 x^{5} + 9434735 x^{4} - 6667061 x^{3} - 5823958 x^{2} - 1561389 x - 136217 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3818394883372513796526550449284140338753741561897=3^{12}\cdot 73^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(219=3\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{219}(64,·)$, $\chi_{219}(1,·)$, $\chi_{219}(197,·)$, $\chi_{219}(70,·)$, $\chi_{219}(145,·)$, $\chi_{219}(209,·)$, $\chi_{219}(76,·)$, $\chi_{219}(80,·)$, $\chi_{219}(17,·)$, $\chi_{219}(82,·)$, $\chi_{219}(83,·)$, $\chi_{219}(212,·)$, $\chi_{219}(154,·)$, $\chi_{219}(95,·)$, $\chi_{219}(97,·)$, $\chi_{219}(100,·)$, $\chi_{219}(167,·)$, $\chi_{219}(46,·)$, $\chi_{219}(176,·)$, $\chi_{219}(49,·)$, $\chi_{219}(211,·)$, $\chi_{219}(116,·)$, $\chi_{219}(56,·)$, $\chi_{219}(125,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{8} + \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{9} + \frac{1}{3} a$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{10} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{19} + \frac{1}{3} a^{11} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{20} + \frac{1}{3} a^{12} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{21} + \frac{1}{3} a^{13} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{22} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{18075987583669000396725472877237330073} a^{23} - \frac{684541751034479326643274764829371551}{6025329194556333465575157625745776691} a^{22} + \frac{2564446055556892211704764221994051632}{18075987583669000396725472877237330073} a^{21} - \frac{540516236630852393208701778594876958}{6025329194556333465575157625745776691} a^{20} + \frac{500316472973653358007865549656514654}{18075987583669000396725472877237330073} a^{19} - \frac{869235685815971840334226360163903750}{18075987583669000396725472877237330073} a^{18} + \frac{485468910406536897469356462871658220}{6025329194556333465575157625745776691} a^{17} + \frac{1119716253707130774291692825734688135}{18075987583669000396725472877237330073} a^{16} + \frac{404272954064904732660482934633481585}{18075987583669000396725472877237330073} a^{15} - \frac{220396980743957092345702879270513985}{18075987583669000396725472877237330073} a^{14} - \frac{653444232623692160499364471042490753}{18075987583669000396725472877237330073} a^{13} + \frac{50087081377128957454345925959648507}{6025329194556333465575157625745776691} a^{12} + \frac{8777498137623735737949401680445730344}{18075987583669000396725472877237330073} a^{11} + \frac{2422336850872011094169663626713911624}{6025329194556333465575157625745776691} a^{10} + \frac{496353527713227613936929538073713769}{6025329194556333465575157625745776691} a^{9} + \frac{72689049906290126294099471680037611}{6025329194556333465575157625745776691} a^{8} + \frac{719478921380077099095139299061456451}{6025329194556333465575157625745776691} a^{7} + \frac{4842903215820333594102655137009788005}{18075987583669000396725472877237330073} a^{6} + \frac{5835680017844991990708866095081929512}{18075987583669000396725472877237330073} a^{5} - \frac{8357552898561845320697048927164332166}{18075987583669000396725472877237330073} a^{4} + \frac{6848314537567252532124444740859406733}{18075987583669000396725472877237330073} a^{3} + \frac{4720756410830106402014838173629836172}{18075987583669000396725472877237330073} a^{2} - \frac{56978829899239955400435826281858769}{18075987583669000396725472877237330073} a + \frac{2466997204152723618628990515861959586}{6025329194556333465575157625745776691}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57070082442997110 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 3.3.5329.1, 4.4.389017.1, 6.6.2073071593.1, 8.8.894839280046857.1, 12.12.313726685568359708377.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{4}$ | R | $24$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{3}$ | $24$ | $24$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | $24$ | $24$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{3}$ | $24$ | $24$ | $24$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 73 | Data not computed | ||||||