Properties

Label 24.24.376...696.1
Degree $24$
Signature $[24, 0]$
Discriminant $3.768\times 10^{38}$
Root discriminant \(40.49\)
Ramified primes $2,7$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2\times C_{12}$ (as 24T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^24 - 24*x^22 + 252*x^20 - 1520*x^18 + 5813*x^16 - 14672*x^14 + 24648*x^12 - 27104*x^10 + 18646*x^8 - 7344*x^6 + 1400*x^4 - 96*x^2 + 1)
 
Copy content gp:K = bnfinit(y^24 - 24*y^22 + 252*y^20 - 1520*y^18 + 5813*y^16 - 14672*y^14 + 24648*y^12 - 27104*y^10 + 18646*y^8 - 7344*y^6 + 1400*y^4 - 96*y^2 + 1, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 - 24*x^22 + 252*x^20 - 1520*x^18 + 5813*x^16 - 14672*x^14 + 24648*x^12 - 27104*x^10 + 18646*x^8 - 7344*x^6 + 1400*x^4 - 96*x^2 + 1);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^24 - 24*x^22 + 252*x^20 - 1520*x^18 + 5813*x^16 - 14672*x^14 + 24648*x^12 - 27104*x^10 + 18646*x^8 - 7344*x^6 + 1400*x^4 - 96*x^2 + 1)
 

\( x^{24} - 24 x^{22} + 252 x^{20} - 1520 x^{18} + 5813 x^{16} - 14672 x^{14} + 24648 x^{12} - 27104 x^{10} + \cdots + 1 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $24$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[24, 0]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(376808323956052112639025409344139165696\) \(\medspace = 2^{72}\cdot 7^{20}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(40.49\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2^{3}7^{5/6}\approx 40.48912147837109$
Ramified primes:   \(2\), \(7\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$:   $C_2\times C_{12}$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(112=2^{4}\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{112}(1,·)$, $\chi_{112}(3,·)$, $\chi_{112}(65,·)$, $\chi_{112}(9,·)$, $\chi_{112}(75,·)$, $\chi_{112}(81,·)$, $\chi_{112}(19,·)$, $\chi_{112}(85,·)$, $\chi_{112}(87,·)$, $\chi_{112}(25,·)$, $\chi_{112}(27,·)$, $\chi_{112}(29,·)$, $\chi_{112}(31,·)$, $\chi_{112}(37,·)$, $\chi_{112}(103,·)$, $\chi_{112}(109,·)$, $\chi_{112}(93,·)$, $\chi_{112}(47,·)$, $\chi_{112}(83,·)$, $\chi_{112}(53,·)$, $\chi_{112}(55,·)$, $\chi_{112}(111,·)$, $\chi_{112}(57,·)$, $\chi_{112}(59,·)$$\rbrace$
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $23$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $a^{16}-16a^{14}+104a^{12}-352a^{10}+660a^{8}-672a^{6}+336a^{4}-64a^{2}+3$, $a^{8}-8a^{6}+20a^{4}-16a^{2}+2$, $a^{6}-6a^{4}+9a^{2}-2$, $a^{22}-22a^{20}+208a^{18}-1104a^{16}+3604a^{14}-7448a^{12}+9648a^{10}-7456a^{8}+3075a^{6}-530a^{4}+24a^{2}$, $a^{23}-23a^{21}+230a^{19}-1312a^{17}+4708a^{15}-11052a^{13}+17096a^{11}-17104a^{9}+10531a^{7}-3605a^{5}+554a^{3}-24a$, $a$, $a^{17}-17a^{15}+119a^{13}-442a^{11}+935a^{9}-1122a^{7}+714a^{5}-204a^{3}+17a$, $a^{15}-15a^{13}+90a^{11}-275a^{9}+450a^{7}-378a^{5}+140a^{3}-15a$, $a^{19}-19a^{17}+152a^{15}-665a^{13}+1729a^{11}-2717a^{9}+2508a^{7}-1254a^{5}+285a^{3}-19a$, $a^{14}-14a^{12}+77a^{10}-210a^{8}+294a^{6}-196a^{4}+49a^{2}-3$, $a^{14}-14a^{12}+77a^{10}-210a^{8}+a^{7}+294a^{6}-7a^{5}-196a^{4}+14a^{3}+49a^{2}-7a-1$, $a^{13}-13a^{11}+65a^{9}-156a^{7}+182a^{5}-91a^{3}+13a+1$, $a^{21}-22a^{19}+208a^{17}-1104a^{15}+3604a^{13}-7448a^{11}+9648a^{9}-7456a^{7}+3075a^{5}-530a^{3}+24a+1$, $a^{8}-a^{7}-8a^{6}+7a^{5}+20a^{4}-14a^{3}-16a^{2}+7a+2$, $a^{16}-16a^{14}+104a^{12}-352a^{10}+660a^{8}-672a^{6}+336a^{4}-64a^{2}-a+2$, $a^{16}-a^{15}-16a^{14}+15a^{13}+104a^{12}-90a^{11}-352a^{10}+275a^{9}+660a^{8}-450a^{7}-672a^{6}+378a^{5}+336a^{4}-140a^{3}-64a^{2}+15a+2$, $a^{23}-23a^{21}+230a^{19}-1311a^{17}+4692a^{15}-10948a^{13}+16744a^{11}-16445a^{9}-a^{8}+9867a^{7}+8a^{6}-3289a^{5}-20a^{4}+506a^{3}+16a^{2}-23a-2$, $a^{15}-15a^{13}+90a^{11}-275a^{9}+450a^{7}-378a^{5}+140a^{3}-15a+1$, $a+1$, $a^{7}-7a^{5}+14a^{3}-7a+1$, $a^{9}-9a^{7}+27a^{5}-30a^{3}+9a+1$, $a^{9}-9a^{7}+27a^{5}-30a^{3}+9a$, $a^{19}-19a^{17}+152a^{15}-665a^{13}+1729a^{11}-2717a^{9}+2508a^{7}-1254a^{5}+285a^{3}-19a-1$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 360688478301.3431 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{24}\cdot(2\pi)^{0}\cdot 360688478301.3431 \cdot 1}{2\cdot\sqrt{376808323956052112639025409344139165696}}\cr\approx \mathstrut & 0.155869781218936 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^24 - 24*x^22 + 252*x^20 - 1520*x^18 + 5813*x^16 - 14672*x^14 + 24648*x^12 - 27104*x^10 + 18646*x^8 - 7344*x^6 + 1400*x^4 - 96*x^2 + 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^24 - 24*x^22 + 252*x^20 - 1520*x^18 + 5813*x^16 - 14672*x^14 + 24648*x^12 - 27104*x^10 + 18646*x^8 - 7344*x^6 + 1400*x^4 - 96*x^2 + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 - 24*x^22 + 252*x^20 - 1520*x^18 + 5813*x^16 - 14672*x^14 + 24648*x^12 - 27104*x^10 + 18646*x^8 - 7344*x^6 + 1400*x^4 - 96*x^2 + 1); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^24 - 24*x^22 + 252*x^20 - 1520*x^18 + 5813*x^16 - 14672*x^14 + 24648*x^12 - 27104*x^10 + 18646*x^8 - 7344*x^6 + 1400*x^4 - 96*x^2 + 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{12}$ (as 24T2):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2\times C_{12}$
Character table for $C_2\times C_{12}$

Intermediate fields

\(\Q(\sqrt{14}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{2}, \sqrt{7})\), 4.4.100352.1, \(\Q(\zeta_{16})^+\), 6.6.8605184.1, 6.6.1229312.1, \(\Q(\zeta_{28})^+\), 8.8.40282095616.1, \(\Q(\zeta_{56})^+\), 12.12.2426443912768913408.1, 12.12.49519263525896192.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.12.0.1}{12} }^{2}$ ${\href{/padicField/5.12.0.1}{12} }^{2}$ R ${\href{/padicField/11.12.0.1}{12} }^{2}$ ${\href{/padicField/13.4.0.1}{4} }^{6}$ ${\href{/padicField/17.6.0.1}{6} }^{4}$ ${\href{/padicField/19.12.0.1}{12} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{4}$ ${\href{/padicField/29.4.0.1}{4} }^{6}$ ${\href{/padicField/31.3.0.1}{3} }^{8}$ ${\href{/padicField/37.12.0.1}{12} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{12}$ ${\href{/padicField/43.4.0.1}{4} }^{6}$ ${\href{/padicField/47.3.0.1}{3} }^{8}$ ${\href{/padicField/53.12.0.1}{12} }^{2}$ ${\href{/padicField/59.12.0.1}{12} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $24$$8$$3$$72$
\(7\) Copy content Toggle raw display 7.2.6.10a1.2$x^{12} + 36 x^{11} + 558 x^{10} + 4860 x^{9} + 26055 x^{8} + 88776 x^{7} + 192996 x^{6} + 266328 x^{5} + 234495 x^{4} + 131220 x^{3} + 45198 x^{2} + 8748 x + 736$$6$$2$$10$$C_6\times C_2$$$[\ ]_{6}^{2}$$
7.2.6.10a1.2$x^{12} + 36 x^{11} + 558 x^{10} + 4860 x^{9} + 26055 x^{8} + 88776 x^{7} + 192996 x^{6} + 266328 x^{5} + 234495 x^{4} + 131220 x^{3} + 45198 x^{2} + 8748 x + 736$$6$$2$$10$$C_6\times C_2$$$[\ ]_{6}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)