Normalized defining polynomial
\( x^{24} - 40 x^{22} + 644 x^{20} - 5440 x^{18} + 26378 x^{16} - 75632 x^{14} + 128408 x^{12} - 128416 x^{10} + 75464 x^{8} - 25504 x^{6} + 4640 x^{4} - 384 x^{2} + 8 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(329123002999201416128761938882499016916992=2^{93}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(224=2^{5}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{224}(1,·)$, $\chi_{224}(197,·)$, $\chi_{224}(193,·)$, $\chi_{224}(9,·)$, $\chi_{224}(141,·)$, $\chi_{224}(205,·)$, $\chi_{224}(81,·)$, $\chi_{224}(149,·)$, $\chi_{224}(121,·)$, $\chi_{224}(25,·)$, $\chi_{224}(29,·)$, $\chi_{224}(165,·)$, $\chi_{224}(37,·)$, $\chi_{224}(65,·)$, $\chi_{224}(113,·)$, $\chi_{224}(169,·)$, $\chi_{224}(109,·)$, $\chi_{224}(93,·)$, $\chi_{224}(221,·)$, $\chi_{224}(177,·)$, $\chi_{224}(53,·)$, $\chi_{224}(137,·)$, $\chi_{224}(57,·)$, $\chi_{224}(85,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{4} a^{16}$, $\frac{1}{4} a^{17}$, $\frac{1}{4} a^{18}$, $\frac{1}{4} a^{19}$, $\frac{1}{508} a^{20} - \frac{63}{508} a^{18} + \frac{27}{254} a^{14} - \frac{5}{254} a^{12} + \frac{11}{127} a^{10} - \frac{5}{254} a^{8} - \frac{15}{127} a^{6} - \frac{4}{127} a^{4} - \frac{35}{127} a^{2} + \frac{50}{127}$, $\frac{1}{508} a^{21} - \frac{63}{508} a^{19} + \frac{27}{254} a^{15} - \frac{5}{254} a^{13} + \frac{11}{127} a^{11} - \frac{5}{254} a^{9} - \frac{15}{127} a^{7} - \frac{4}{127} a^{5} - \frac{35}{127} a^{3} + \frac{50}{127} a$, $\frac{1}{6352154428} a^{22} - \frac{1263377}{3176077214} a^{20} - \frac{352945897}{3176077214} a^{18} - \frac{414308617}{6352154428} a^{16} + \frac{578554651}{3176077214} a^{14} - \frac{168458617}{3176077214} a^{12} - \frac{481052447}{3176077214} a^{10} - \frac{35684156}{1588038607} a^{8} - \frac{649007968}{1588038607} a^{6} - \frac{213379108}{1588038607} a^{4} - \frac{718337075}{1588038607} a^{2} - \frac{651414018}{1588038607}$, $\frac{1}{6352154428} a^{23} - \frac{1263377}{3176077214} a^{21} - \frac{352945897}{3176077214} a^{19} - \frac{414308617}{6352154428} a^{17} + \frac{578554651}{3176077214} a^{15} - \frac{168458617}{3176077214} a^{13} - \frac{481052447}{3176077214} a^{11} - \frac{35684156}{1588038607} a^{9} - \frac{649007968}{1588038607} a^{7} - \frac{213379108}{1588038607} a^{5} - \frac{718337075}{1588038607} a^{3} - \frac{651414018}{1588038607} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12155699667526.955 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{16})^+\), 6.6.1229312.1, \(\Q(\zeta_{32})^+\), 12.12.49519263525896192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $24$ | $24$ | R | $24$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | $24$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{8}$ | $24$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | $24$ | $24$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |