Normalized defining polynomial
\( x^{24} - x^{23} - 37 x^{22} + 32 x^{21} + 550 x^{20} - 411 x^{19} - 4276 x^{18} + 2783 x^{17} + 18986 x^{16} - 10883 x^{15} - 49508 x^{14} + 25292 x^{13} + 75800 x^{12} - 34634 x^{11} - 67445 x^{10} + 26654 x^{9} + 34507 x^{8} - 11047 x^{7} - 9753 x^{6} + 2302 x^{5} + 1370 x^{4} - 214 x^{3} - 76 x^{2} + 8 x + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2296127442650479958000916502307873630417=7^{16}\cdot 17^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(119=7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{119}(64,·)$, $\chi_{119}(1,·)$, $\chi_{119}(2,·)$, $\chi_{119}(67,·)$, $\chi_{119}(4,·)$, $\chi_{119}(100,·)$, $\chi_{119}(8,·)$, $\chi_{119}(9,·)$, $\chi_{119}(15,·)$, $\chi_{119}(16,·)$, $\chi_{119}(81,·)$, $\chi_{119}(18,·)$, $\chi_{119}(86,·)$, $\chi_{119}(25,·)$, $\chi_{119}(93,·)$, $\chi_{119}(30,·)$, $\chi_{119}(32,·)$, $\chi_{119}(36,·)$, $\chi_{119}(106,·)$, $\chi_{119}(43,·)$, $\chi_{119}(72,·)$, $\chi_{119}(50,·)$, $\chi_{119}(53,·)$, $\chi_{119}(60,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{124443115529047578349036543249} a^{23} - \frac{20319689947768478839077300118}{124443115529047578349036543249} a^{22} - \frac{37828199293480920255676478719}{124443115529047578349036543249} a^{21} + \frac{17866155357051436238243468201}{124443115529047578349036543249} a^{20} + \frac{31712804218282491071928431476}{124443115529047578349036543249} a^{19} - \frac{31699999820067286091170648211}{124443115529047578349036543249} a^{18} - \frac{62069235766515930856952936747}{124443115529047578349036543249} a^{17} - \frac{4090132866511296148974581950}{124443115529047578349036543249} a^{16} - \frac{27416116458636780838789168422}{124443115529047578349036543249} a^{15} - \frac{41552152405288752687989498604}{124443115529047578349036543249} a^{14} - \frac{49498745926423890137414539699}{124443115529047578349036543249} a^{13} + \frac{55391603907048174063873888666}{124443115529047578349036543249} a^{12} - \frac{10808182309188718112766972200}{124443115529047578349036543249} a^{11} - \frac{52443071696719988466585642685}{124443115529047578349036543249} a^{10} - \frac{47130390839157268238008261703}{124443115529047578349036543249} a^{9} + \frac{32964444807806539419286268518}{124443115529047578349036543249} a^{8} + \frac{36387085809786144338291080306}{124443115529047578349036543249} a^{7} + \frac{11025080937397248722558418643}{124443115529047578349036543249} a^{6} - \frac{30983760426174364837278468808}{124443115529047578349036543249} a^{5} - \frac{37516466679554263825751339394}{124443115529047578349036543249} a^{4} - \frac{17094957812877852287728542141}{124443115529047578349036543249} a^{3} - \frac{3232662452616566710628292234}{124443115529047578349036543249} a^{2} + \frac{30976940305332140579470968625}{124443115529047578349036543249} a - \frac{46938636406964374786251312547}{124443115529047578349036543249}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 657704246476.2357 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.4.4913.1, 6.6.11796113.1, \(\Q(\zeta_{17})^+\), 12.12.683635509017782097.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | $24$ | $24$ | R | $24$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ | R | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ | $24$ | $24$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 17 | Data not computed | ||||||