Properties

Label 24.24.1992897508...3777.1
Degree $24$
Signature $[24, 0]$
Discriminant $17^{21}\cdot 19^{16}$
Root discriminant $84.95$
Ramified primes $17, 19$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{24}$ (as 24T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2243, -141483, 364409, 1393042, -3710767, -4381142, 13458471, 4333001, -22525088, 2375261, 18290959, -6545957, -7038616, 3901011, 1192975, -1029530, -50028, 138743, -9525, -9890, 1311, 354, -61, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 5*x^23 - 61*x^22 + 354*x^21 + 1311*x^20 - 9890*x^19 - 9525*x^18 + 138743*x^17 - 50028*x^16 - 1029530*x^15 + 1192975*x^14 + 3901011*x^13 - 7038616*x^12 - 6545957*x^11 + 18290959*x^10 + 2375261*x^9 - 22525088*x^8 + 4333001*x^7 + 13458471*x^6 - 4381142*x^5 - 3710767*x^4 + 1393042*x^3 + 364409*x^2 - 141483*x + 2243)
 
gp: K = bnfinit(x^24 - 5*x^23 - 61*x^22 + 354*x^21 + 1311*x^20 - 9890*x^19 - 9525*x^18 + 138743*x^17 - 50028*x^16 - 1029530*x^15 + 1192975*x^14 + 3901011*x^13 - 7038616*x^12 - 6545957*x^11 + 18290959*x^10 + 2375261*x^9 - 22525088*x^8 + 4333001*x^7 + 13458471*x^6 - 4381142*x^5 - 3710767*x^4 + 1393042*x^3 + 364409*x^2 - 141483*x + 2243, 1)
 

Normalized defining polynomial

\( x^{24} - 5 x^{23} - 61 x^{22} + 354 x^{21} + 1311 x^{20} - 9890 x^{19} - 9525 x^{18} + 138743 x^{17} - 50028 x^{16} - 1029530 x^{15} + 1192975 x^{14} + 3901011 x^{13} - 7038616 x^{12} - 6545957 x^{11} + 18290959 x^{10} + 2375261 x^{9} - 22525088 x^{8} + 4333001 x^{7} + 13458471 x^{6} - 4381142 x^{5} - 3710767 x^{4} + 1393042 x^{3} + 364409 x^{2} - 141483 x + 2243 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[24, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(19928975083988902198525863514102984930745573777=17^{21}\cdot 19^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $84.95$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(323=17\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{323}(64,·)$, $\chi_{323}(1,·)$, $\chi_{323}(134,·)$, $\chi_{323}(140,·)$, $\chi_{323}(77,·)$, $\chi_{323}(144,·)$, $\chi_{323}(273,·)$, $\chi_{323}(83,·)$, $\chi_{323}(87,·)$, $\chi_{323}(26,·)$, $\chi_{323}(220,·)$, $\chi_{323}(30,·)$, $\chi_{323}(229,·)$, $\chi_{323}(49,·)$, $\chi_{323}(106,·)$, $\chi_{323}(172,·)$, $\chi_{323}(239,·)$, $\chi_{323}(305,·)$, $\chi_{323}(178,·)$, $\chi_{323}(115,·)$, $\chi_{323}(121,·)$, $\chi_{323}(315,·)$, $\chi_{323}(254,·)$, $\chi_{323}(191,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{123594130698016265271219292510762198790596189145508119712395605519151} a^{23} - \frac{51994548174504053870693633798021197113354148136537173020780040510667}{123594130698016265271219292510762198790596189145508119712395605519151} a^{22} + \frac{8062355819304640776162346648543499718811722705532182853090896753296}{123594130698016265271219292510762198790596189145508119712395605519151} a^{21} + \frac{8304059954074466581995058791453092987521098043053335369102875368569}{123594130698016265271219292510762198790596189145508119712395605519151} a^{20} - \frac{736834869611026872976677557432810506200466068437949748903135217757}{123594130698016265271219292510762198790596189145508119712395605519151} a^{19} + \frac{28855079672138920296092515019619594750394687769750162037926265295516}{123594130698016265271219292510762198790596189145508119712395605519151} a^{18} + \frac{44918703320120467592325332951845690961526304838246246481684454737934}{123594130698016265271219292510762198790596189145508119712395605519151} a^{17} + \frac{10462692383764223950252466071482381350358559309328433425612394570297}{123594130698016265271219292510762198790596189145508119712395605519151} a^{16} + \frac{43630866580542104333181632335268429168434161597915438326550565712167}{123594130698016265271219292510762198790596189145508119712395605519151} a^{15} - \frac{45768653372328970909321119842488897378917328281542389884262102880842}{123594130698016265271219292510762198790596189145508119712395605519151} a^{14} - \frac{40522739428452493591567057075129566634562897407124579308435972218999}{123594130698016265271219292510762198790596189145508119712395605519151} a^{13} - \frac{14407725839382862278609657917990219022177480498733843801109673950108}{123594130698016265271219292510762198790596189145508119712395605519151} a^{12} - \frac{13512799361446751024126833953907713125381434771168841115217307641408}{123594130698016265271219292510762198790596189145508119712395605519151} a^{11} + \frac{59277660902723272795292725681448117566363946513046999809116295727891}{123594130698016265271219292510762198790596189145508119712395605519151} a^{10} + \frac{42986873068814330414793930220252078985862035195009106084490036836740}{123594130698016265271219292510762198790596189145508119712395605519151} a^{9} - \frac{584143841062943681238549894601577484823548269111691220450602380856}{123594130698016265271219292510762198790596189145508119712395605519151} a^{8} + \frac{27963834266445179742060583580267207631275116340701269579193953743317}{123594130698016265271219292510762198790596189145508119712395605519151} a^{7} + \frac{10074813782978644442961007135883489283895614440503185509476359251838}{123594130698016265271219292510762198790596189145508119712395605519151} a^{6} - \frac{15814164141531133929764229832328186503181590766888612075229076767693}{123594130698016265271219292510762198790596189145508119712395605519151} a^{5} - \frac{21458178353586486660414293866676252468590052422123028034850180760172}{123594130698016265271219292510762198790596189145508119712395605519151} a^{4} + \frac{6774611080002100633607700681609357448452725510565671115701946281686}{123594130698016265271219292510762198790596189145508119712395605519151} a^{3} - \frac{11017198045296846574856134070084280003680786318933906956476640325816}{123594130698016265271219292510762198790596189145508119712395605519151} a^{2} + \frac{33501414401410224024936252379867431479146342831700859348557195745742}{123594130698016265271219292510762198790596189145508119712395605519151} a + \frac{52040145054712868323196905063386707733316081189187175284933371900442}{123594130698016265271219292510762198790596189145508119712395605519151}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $23$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2353165244433466.5 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{24}$ (as 24T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 24
The 24 conjugacy class representatives for $C_{24}$
Character table for $C_{24}$ is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 3.3.361.1, 4.4.4913.1, 6.6.640267073.1, \(\Q(\zeta_{17})^+\), 12.12.2014044676385121747377.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ $24$ $24$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{3}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ R R $24$ $24$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{3}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{3}$ $24$ ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
17Data not computed
$19$19.12.8.1$x^{12} - 114 x^{9} + 4332 x^{6} - 54872 x^{3} + 130321000$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$
19.12.8.1$x^{12} - 114 x^{9} + 4332 x^{6} - 54872 x^{3} + 130321000$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$