Normalized defining polynomial
\( x^{24} - 104 x^{22} + 4004 x^{20} - 74048 x^{18} + 745290 x^{16} - 4421040 x^{14} + 16152344 x^{12} - 36909600 x^{10} + 52112840 x^{8} - 43377568 x^{6} + 19192992 x^{4} - 3655808 x^{2} + 228488 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(188216044816745326913150945765287080795084676923392=2^{93}\cdot 13^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $124.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(416=2^{5}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{416}(1,·)$, $\chi_{416}(389,·)$, $\chi_{416}(321,·)$, $\chi_{416}(393,·)$, $\chi_{416}(77,·)$, $\chi_{416}(205,·)$, $\chi_{416}(209,·)$, $\chi_{416}(277,·)$, $\chi_{416}(313,·)$, $\chi_{416}(217,·)$, $\chi_{416}(285,·)$, $\chi_{416}(69,·)$, $\chi_{416}(289,·)$, $\chi_{416}(101,·)$, $\chi_{416}(81,·)$, $\chi_{416}(105,·)$, $\chi_{416}(173,·)$, $\chi_{416}(413,·)$, $\chi_{416}(113,·)$, $\chi_{416}(181,·)$, $\chi_{416}(9,·)$, $\chi_{416}(185,·)$, $\chi_{416}(381,·)$, $\chi_{416}(309,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{13} a^{6}$, $\frac{1}{13} a^{7}$, $\frac{1}{26} a^{8}$, $\frac{1}{26} a^{9}$, $\frac{1}{26} a^{10}$, $\frac{1}{26} a^{11}$, $\frac{1}{338} a^{12}$, $\frac{1}{338} a^{13}$, $\frac{1}{338} a^{14}$, $\frac{1}{338} a^{15}$, $\frac{1}{3380} a^{16} + \frac{1}{845} a^{12} - \frac{1}{65} a^{8} + \frac{1}{5} a^{4} - \frac{1}{5}$, $\frac{1}{3380} a^{17} + \frac{1}{845} a^{13} - \frac{1}{65} a^{9} + \frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{43940} a^{18} - \frac{1}{1690} a^{14} + \frac{1}{130} a^{10} + \frac{1}{65} a^{6} - \frac{2}{5} a^{2}$, $\frac{1}{43940} a^{19} - \frac{1}{1690} a^{15} + \frac{1}{130} a^{11} + \frac{1}{65} a^{7} - \frac{2}{5} a^{3}$, $\frac{1}{1362140} a^{20} + \frac{7}{1362140} a^{18} + \frac{7}{104780} a^{16} - \frac{16}{26195} a^{14} - \frac{22}{26195} a^{12} - \frac{63}{4030} a^{10} + \frac{3}{310} a^{8} + \frac{4}{155} a^{6} + \frac{52}{155} a^{4} + \frac{56}{155} a^{2} - \frac{4}{155}$, $\frac{1}{1362140} a^{21} + \frac{7}{1362140} a^{19} + \frac{7}{104780} a^{17} - \frac{16}{26195} a^{15} - \frac{22}{26195} a^{13} - \frac{63}{4030} a^{11} + \frac{3}{310} a^{9} + \frac{4}{155} a^{7} + \frac{52}{155} a^{5} + \frac{56}{155} a^{3} - \frac{4}{155} a$, $\frac{1}{1604041201690460} a^{22} - \frac{30407886}{401010300422615} a^{20} - \frac{1865563}{275230130695} a^{18} + \frac{2847963}{398025112082} a^{16} + \frac{662978783}{995062780205} a^{14} - \frac{39620395664}{30846946186355} a^{12} + \frac{66048142709}{4745684028670} a^{10} + \frac{414114833}{153086581570} a^{8} - \frac{1417999}{76543290785} a^{6} + \frac{175777965}{1177589089} a^{4} - \frac{34328675859}{182526308795} a^{2} + \frac{57657206828}{182526308795}$, $\frac{1}{1604041201690460} a^{23} - \frac{30407886}{401010300422615} a^{21} - \frac{1865563}{275230130695} a^{19} + \frac{2847963}{398025112082} a^{17} + \frac{662978783}{995062780205} a^{15} - \frac{39620395664}{30846946186355} a^{13} + \frac{66048142709}{4745684028670} a^{11} + \frac{414114833}{153086581570} a^{9} - \frac{1417999}{76543290785} a^{7} + \frac{175777965}{1177589089} a^{5} - \frac{34328675859}{182526308795} a^{3} + \frac{57657206828}{182526308795} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 155322620827080350 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 3.3.169.1, \(\Q(\zeta_{16})^+\), 6.6.14623232.1, 8.8.61334280470528.1, 12.12.7007073538075000832.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $24$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ | $24$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | $24$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}$ | $24$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{3}$ | $24$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 13 | Data not computed | ||||||