Normalized defining polynomial
\( x^{24} - 48 x^{22} + 936 x^{20} - 9584 x^{18} + 55620 x^{16} - 184752 x^{14} + 341336 x^{12} - 336864 x^{10} + 183060 x^{8} - 54976 x^{6} + 8592 x^{4} - 576 x^{2} + 8 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18351423083070806589199715754737431920771072=2^{93}\cdot 3^{32}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(288=2^{5}\cdot 3^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{288}(1,·)$, $\chi_{288}(133,·)$, $\chi_{288}(193,·)$, $\chi_{288}(265,·)$, $\chi_{288}(13,·)$, $\chi_{288}(205,·)$, $\chi_{288}(145,·)$, $\chi_{288}(277,·)$, $\chi_{288}(217,·)$, $\chi_{288}(25,·)$, $\chi_{288}(157,·)$, $\chi_{288}(229,·)$, $\chi_{288}(97,·)$, $\chi_{288}(37,·)$, $\chi_{288}(241,·)$, $\chi_{288}(169,·)$, $\chi_{288}(109,·)$, $\chi_{288}(253,·)$, $\chi_{288}(49,·)$, $\chi_{288}(181,·)$, $\chi_{288}(73,·)$, $\chi_{288}(121,·)$, $\chi_{288}(61,·)$, $\chi_{288}(85,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{34} a^{14} - \frac{3}{17} a^{12} + \frac{1}{17} a^{10} + \frac{5}{34} a^{8} + \frac{2}{17} a^{6} + \frac{5}{17} a^{4} + \frac{4}{17} a^{2} - \frac{7}{17}$, $\frac{1}{34} a^{15} - \frac{3}{17} a^{13} + \frac{1}{17} a^{11} + \frac{5}{34} a^{9} + \frac{2}{17} a^{7} + \frac{5}{17} a^{5} + \frac{4}{17} a^{3} - \frac{7}{17} a$, $\frac{1}{68} a^{16} - \frac{4}{17}$, $\frac{1}{68} a^{17} - \frac{4}{17} a$, $\frac{1}{68} a^{18} - \frac{4}{17} a^{2}$, $\frac{1}{68} a^{19} - \frac{4}{17} a^{3}$, $\frac{1}{68} a^{20} - \frac{4}{17} a^{4}$, $\frac{1}{68} a^{21} - \frac{4}{17} a^{5}$, $\frac{1}{29305626052} a^{22} + \frac{12782034}{7326406513} a^{20} + \frac{90656021}{14652813026} a^{18} - \frac{38946948}{7326406513} a^{16} - \frac{31856446}{7326406513} a^{14} - \frac{357119348}{7326406513} a^{12} + \frac{1518502401}{14652813026} a^{10} - \frac{59039979}{7326406513} a^{8} + \frac{139399973}{7326406513} a^{6} - \frac{3436165571}{7326406513} a^{4} + \frac{3159080086}{7326406513} a^{2} - \frac{1618059094}{7326406513}$, $\frac{1}{29305626052} a^{23} + \frac{12782034}{7326406513} a^{21} + \frac{90656021}{14652813026} a^{19} - \frac{38946948}{7326406513} a^{17} - \frac{31856446}{7326406513} a^{15} - \frac{357119348}{7326406513} a^{13} + \frac{1518502401}{14652813026} a^{11} - \frac{59039979}{7326406513} a^{9} + \frac{139399973}{7326406513} a^{7} - \frac{3436165571}{7326406513} a^{5} + \frac{3159080086}{7326406513} a^{3} - \frac{1618059094}{7326406513} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 71277883593115.94 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{16})^+\), 6.6.3359232.1, \(\Q(\zeta_{32})^+\), 12.12.369768517790072832.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $24$ | ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ | $24$ | $24$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{3}$ | $24$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||