Normalized defining polynomial
\( x^{24} - 8 x^{23} - 60 x^{22} + 592 x^{21} + 1218 x^{20} - 17920 x^{19} - 5984 x^{18} + 290696 x^{17} - 130873 x^{16} - 2788784 x^{15} + 2372100 x^{14} + 16485000 x^{13} - 17278534 x^{12} - 60737008 x^{11} + 67722252 x^{10} + 138010544 x^{9} - 149189430 x^{8} - 186714968 x^{7} + 178027020 x^{6} + 140684888 x^{5} - 100930472 x^{4} - 53389816 x^{3} + 18033608 x^{2} + 8567888 x + 707041 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(174909457836898599788885373561654160049383145472=2^{93}\cdot 3^{12}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(672=2^{5}\cdot 3\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{672}(611,·)$, $\chi_{672}(1,·)$, $\chi_{672}(515,·)$, $\chi_{672}(193,·)$, $\chi_{672}(457,·)$, $\chi_{672}(11,·)$, $\chi_{672}(529,·)$, $\chi_{672}(275,·)$, $\chi_{672}(659,·)$, $\chi_{672}(121,·)$, $\chi_{672}(25,·)$, $\chi_{672}(155,·)$, $\chi_{672}(107,·)$, $\chi_{672}(289,·)$, $\chi_{672}(347,·)$, $\chi_{672}(337,·)$, $\chi_{672}(169,·)$, $\chi_{672}(323,·)$, $\chi_{672}(491,·)$, $\chi_{672}(625,·)$, $\chi_{672}(179,·)$, $\chi_{672}(361,·)$, $\chi_{672}(505,·)$, $\chi_{672}(443,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{4}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{4}{9} a^{2} + \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{4}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{4}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{9} a^{2} + \frac{1}{9} a$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{4}{9} a^{5} - \frac{4}{9} a^{4} + \frac{2}{9} a^{2} - \frac{4}{9} a + \frac{2}{9}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{11} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{2}{9} a^{5} + \frac{1}{9} a^{4} + \frac{1}{9} a^{3} + \frac{1}{9} a^{2} + \frac{1}{3} a + \frac{1}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{11} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} - \frac{1}{3} a^{4} + \frac{2}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a - \frac{1}{9}$, $\frac{1}{27} a^{18} + \frac{1}{27} a^{15} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{4}{27} a^{6} + \frac{1}{9} a^{5} - \frac{1}{9} a^{4} - \frac{1}{27} a^{3} - \frac{2}{9} a^{2} - \frac{1}{9} a - \frac{2}{27}$, $\frac{1}{27} a^{19} + \frac{1}{27} a^{16} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{27} a^{7} + \frac{1}{9} a^{6} + \frac{1}{3} a^{5} - \frac{4}{27} a^{4} - \frac{1}{9} a^{3} + \frac{1}{3} a^{2} + \frac{13}{27} a + \frac{2}{9}$, $\frac{1}{27} a^{20} + \frac{1}{27} a^{17} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{27} a^{8} + \frac{1}{9} a^{7} - \frac{13}{27} a^{5} - \frac{1}{9} a^{4} + \frac{1}{3} a^{3} - \frac{5}{27} a^{2} - \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{3051} a^{21} + \frac{28}{3051} a^{20} - \frac{26}{3051} a^{19} - \frac{10}{1017} a^{18} - \frac{23}{3051} a^{17} - \frac{62}{3051} a^{16} - \frac{133}{3051} a^{15} + \frac{3}{113} a^{14} + \frac{13}{1017} a^{13} + \frac{10}{1017} a^{12} + \frac{31}{339} a^{11} - \frac{8}{113} a^{10} - \frac{487}{3051} a^{9} + \frac{65}{3051} a^{8} + \frac{293}{3051} a^{7} - \frac{151}{1017} a^{6} + \frac{767}{3051} a^{5} - \frac{517}{3051} a^{4} + \frac{1061}{3051} a^{3} + \frac{601}{3051} a^{2} - \frac{1340}{3051} a + \frac{10}{27}$, $\frac{1}{7112226417469654366965887163} a^{22} - \frac{303364913767414029636539}{7112226417469654366965887163} a^{21} - \frac{67315007636231611767835541}{7112226417469654366965887163} a^{20} + \frac{121481826789396982771903150}{7112226417469654366965887163} a^{19} - \frac{8583719202341748105216547}{7112226417469654366965887163} a^{18} + \frac{136837925781599830387127293}{7112226417469654366965887163} a^{17} - \frac{38433913170730243667177806}{2370742139156551455655295721} a^{16} - \frac{358370844006474093891699053}{7112226417469654366965887163} a^{15} - \frac{131022463124348053734955472}{2370742139156551455655295721} a^{14} + \frac{11101160637857437319972027}{2370742139156551455655295721} a^{13} + \frac{2778725320674056332711192}{790247379718850485218431907} a^{12} + \frac{202975100357313250525457843}{2370742139156551455655295721} a^{11} + \frac{585462229787506512114529328}{7112226417469654366965887163} a^{10} - \frac{1058208172866660630446300341}{7112226417469654366965887163} a^{9} - \frac{7783433639711613693633557}{62940056791766852805007851} a^{8} + \frac{659856730900555784016157235}{7112226417469654366965887163} a^{7} - \frac{383327236099153177446954209}{7112226417469654366965887163} a^{6} + \frac{3429435503171552091471338756}{7112226417469654366965887163} a^{5} + \frac{3345310339410461037570664591}{7112226417469654366965887163} a^{4} + \frac{455992145191579164406926818}{2370742139156551455655295721} a^{3} - \frac{2115190782227291396650004573}{7112226417469654366965887163} a^{2} - \frac{899927938435363988095866641}{2370742139156551455655295721} a + \frac{5271824668678863265691369}{62940056791766852805007851}$, $\frac{1}{9566794008707761281617054272831861557} a^{23} + \frac{113518789}{3188931336235920427205684757610620519} a^{22} - \frac{155009722023549833608518351208489}{3188931336235920427205684757610620519} a^{21} - \frac{80508107951362575512456841922102511}{9566794008707761281617054272831861557} a^{20} + \frac{5542646876451937206503626572402533}{1062977112078640142401894919203540173} a^{19} - \frac{16115690985847945898031970082982091}{1062977112078640142401894919203540173} a^{18} - \frac{7827112477187070158225496959643775}{1062977112078640142401894919203540173} a^{17} - \frac{11642347666233933750355300355096917}{354325704026213380800631639734513391} a^{16} + \frac{35907674046535620699350058609839134}{1062977112078640142401894919203540173} a^{15} - \frac{106300571315619973150610925840883124}{3188931336235920427205684757610620519} a^{14} - \frac{65104110748536505187277963216957623}{3188931336235920427205684757610620519} a^{13} - \frac{167223102459090834063537601109831410}{3188931336235920427205684757610620519} a^{12} + \frac{270177835038385122629362338255405182}{9566794008707761281617054272831861557} a^{11} - \frac{110844698213477142294571204000636931}{3188931336235920427205684757610620519} a^{10} + \frac{101908968287462865439989579571257857}{1062977112078640142401894919203540173} a^{9} - \frac{528204204833820406549708533058578508}{9566794008707761281617054272831861557} a^{8} + \frac{40213207543238193290336425226720971}{1062977112078640142401894919203540173} a^{7} + \frac{24384199649500283276804582814984419}{3188931336235920427205684757610620519} a^{6} + \frac{1645559711095154635896700320627646333}{9566794008707761281617054272831861557} a^{5} - \frac{72333712648090881271170295923600188}{3188931336235920427205684757610620519} a^{4} + \frac{281741449334937804959468258017470652}{1062977112078640142401894919203540173} a^{3} - \frac{179977659489505581008812186645771787}{3188931336235920427205684757610620519} a^{2} + \frac{21345283260222268883307097880452040}{3188931336235920427205684757610620519} a + \frac{13342227717962439051000258578708749}{28220631294123189621289245642571863}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8200108600656127.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{16})^+\), 6.6.1229312.1, 8.8.173946175488.1, 12.12.49519263525896192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $24$ | R | $24$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{8}$ | $24$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | $24$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | $24$ | $24$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |