Normalized defining polynomial
\( x^{24} - 102 x^{22} + 3825 x^{20} - 72114 x^{18} + 773874 x^{16} - 5001723 x^{14} + 19879443 x^{12} - 48441024 x^{10} + 70929270 x^{8} - 60356205 x^{6} + 27856710 x^{4} - 5969295 x^{2} + 397953 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(173985243292970336610023479950719759658537568960512=2^{24}\cdot 3^{36}\cdot 17^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(612=2^{2}\cdot 3^{2}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{612}(383,·)$, $\chi_{612}(1,·)$, $\chi_{612}(263,·)$, $\chi_{612}(587,·)$, $\chi_{612}(13,·)$, $\chi_{612}(467,·)$, $\chi_{612}(205,·)$, $\chi_{612}(563,·)$, $\chi_{612}(83,·)$, $\chi_{612}(217,·)$, $\chi_{612}(409,·)$, $\chi_{612}(155,·)$, $\chi_{612}(157,·)$, $\chi_{612}(287,·)$, $\chi_{612}(421,·)$, $\chi_{612}(359,·)$, $\chi_{612}(169,·)$, $\chi_{612}(491,·)$, $\chi_{612}(179,·)$, $\chi_{612}(565,·)$, $\chi_{612}(577,·)$, $\chi_{612}(361,·)$, $\chi_{612}(59,·)$, $\chi_{612}(373,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{51} a^{8}$, $\frac{1}{51} a^{9}$, $\frac{1}{51} a^{10}$, $\frac{1}{51} a^{11}$, $\frac{1}{153} a^{12}$, $\frac{1}{153} a^{13}$, $\frac{1}{153} a^{14}$, $\frac{1}{153} a^{15}$, $\frac{1}{2601} a^{16}$, $\frac{1}{2601} a^{17}$, $\frac{1}{405756} a^{18} - \frac{5}{33813} a^{16} + \frac{5}{1989} a^{14} - \frac{1}{884} a^{12} + \frac{1}{663} a^{10} - \frac{1}{663} a^{8} + \frac{1}{78} a^{6} + \frac{1}{13} a^{4} - \frac{6}{13} a^{2} + \frac{7}{52}$, $\frac{1}{405756} a^{19} - \frac{5}{33813} a^{17} + \frac{5}{1989} a^{15} - \frac{1}{884} a^{13} + \frac{1}{663} a^{11} - \frac{1}{663} a^{9} + \frac{1}{78} a^{7} + \frac{1}{13} a^{5} - \frac{6}{13} a^{3} + \frac{7}{52} a$, $\frac{1}{36112284} a^{20} - \frac{1}{925956} a^{18} + \frac{149}{3009357} a^{16} - \frac{317}{708084} a^{14} + \frac{1279}{708084} a^{12} + \frac{5}{3471} a^{10} - \frac{1091}{118014} a^{8} - \frac{277}{2314} a^{6} + \frac{54}{1157} a^{4} + \frac{855}{4628} a^{2} + \frac{771}{4628}$, $\frac{1}{36112284} a^{21} - \frac{1}{925956} a^{19} + \frac{149}{3009357} a^{17} - \frac{317}{708084} a^{15} + \frac{1279}{708084} a^{13} + \frac{5}{3471} a^{11} - \frac{1091}{118014} a^{9} - \frac{277}{2314} a^{7} + \frac{54}{1157} a^{5} + \frac{855}{4628} a^{3} + \frac{771}{4628} a$, $\frac{1}{166419019003068} a^{22} + \frac{3175}{3263118019668} a^{20} + \frac{1099}{5543235594} a^{18} + \frac{792875}{362568668852} a^{16} + \frac{553678127}{191948118804} a^{14} - \frac{13408531}{31991353134} a^{12} + \frac{24056901}{10663784378} a^{10} - \frac{151441021}{31991353134} a^{8} + \frac{1502060611}{15995676567} a^{6} - \frac{476280449}{1254562868} a^{4} - \frac{386706241}{1254562868} a^{2} - \frac{156836189}{627281434}$, $\frac{1}{166419019003068} a^{23} + \frac{3175}{3263118019668} a^{21} + \frac{1099}{5543235594} a^{19} + \frac{792875}{362568668852} a^{17} + \frac{553678127}{191948118804} a^{15} - \frac{13408531}{31991353134} a^{13} + \frac{24056901}{10663784378} a^{11} - \frac{151441021}{31991353134} a^{9} + \frac{1502060611}{15995676567} a^{7} - \frac{476280449}{1254562868} a^{5} - \frac{386706241}{1254562868} a^{3} - \frac{156836189}{627281434} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 132447362854217420 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\zeta_{9})^+\), 4.4.4913.1, 6.6.32234193.1, 8.8.8508782723328.1, 12.12.5104819233548816337.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $24$ | $24$ | $24$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{6}$ | $24$ | $24$ | $24$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{3}$ | $24$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |