Properties

Label 24.24.1736903958...0000.1
Degree $24$
Signature $[24, 0]$
Discriminant $2^{24}\cdot 3^{12}\cdot 5^{12}\cdot 7^{20}$
Root discriminant $39.20$
Ramified primes $2, 3, 5, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^2\times C_6$ (as 24T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -48, 0, 676, 0, -4284, 0, 14404, 0, -28065, 0, 33158, 0, -24144, 0, 10762, 0, -2856, 0, 429, 0, -33, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 33*x^22 + 429*x^20 - 2856*x^18 + 10762*x^16 - 24144*x^14 + 33158*x^12 - 28065*x^10 + 14404*x^8 - 4284*x^6 + 676*x^4 - 48*x^2 + 1)
 
gp: K = bnfinit(x^24 - 33*x^22 + 429*x^20 - 2856*x^18 + 10762*x^16 - 24144*x^14 + 33158*x^12 - 28065*x^10 + 14404*x^8 - 4284*x^6 + 676*x^4 - 48*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{24} - 33 x^{22} + 429 x^{20} - 2856 x^{18} + 10762 x^{16} - 24144 x^{14} + 33158 x^{12} - 28065 x^{10} + 14404 x^{8} - 4284 x^{6} + 676 x^{4} - 48 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[24, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(173690395826049922758414336000000000000=2^{24}\cdot 3^{12}\cdot 5^{12}\cdot 7^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $39.20$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(420=2^{2}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{420}(1,·)$, $\chi_{420}(11,·)$, $\chi_{420}(391,·)$, $\chi_{420}(139,·)$, $\chi_{420}(269,·)$, $\chi_{420}(271,·)$, $\chi_{420}(209,·)$, $\chi_{420}(19,·)$, $\chi_{420}(341,·)$, $\chi_{420}(89,·)$, $\chi_{420}(71,·)$, $\chi_{420}(31,·)$, $\chi_{420}(289,·)$, $\chi_{420}(101,·)$, $\chi_{420}(359,·)$, $\chi_{420}(41,·)$, $\chi_{420}(199,·)$, $\chi_{420}(109,·)$, $\chi_{420}(239,·)$, $\chi_{420}(179,·)$, $\chi_{420}(361,·)$, $\chi_{420}(121,·)$, $\chi_{420}(169,·)$, $\chi_{420}(191,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{533} a^{20} - \frac{73}{533} a^{18} + \frac{119}{533} a^{16} + \frac{50}{533} a^{14} + \frac{157}{533} a^{12} - \frac{44}{533} a^{10} + \frac{46}{533} a^{8} - \frac{248}{533} a^{6} - \frac{67}{533} a^{4} - \frac{64}{533} a^{2} + \frac{50}{533}$, $\frac{1}{533} a^{21} - \frac{73}{533} a^{19} + \frac{119}{533} a^{17} + \frac{50}{533} a^{15} + \frac{157}{533} a^{13} - \frac{44}{533} a^{11} + \frac{46}{533} a^{9} - \frac{248}{533} a^{7} - \frac{67}{533} a^{5} - \frac{64}{533} a^{3} + \frac{50}{533} a$, $\frac{1}{282174997} a^{22} - \frac{62943}{282174997} a^{20} - \frac{78057884}{282174997} a^{18} + \frac{98888264}{282174997} a^{16} + \frac{97010555}{282174997} a^{14} + \frac{93971624}{282174997} a^{12} - \frac{76410824}{282174997} a^{10} + \frac{46895262}{282174997} a^{8} - \frac{8391441}{21705769} a^{6} - \frac{69971780}{282174997} a^{4} - \frac{78331166}{282174997} a^{2} + \frac{138739501}{282174997}$, $\frac{1}{282174997} a^{23} - \frac{62943}{282174997} a^{21} - \frac{78057884}{282174997} a^{19} + \frac{98888264}{282174997} a^{17} + \frac{97010555}{282174997} a^{15} + \frac{93971624}{282174997} a^{13} - \frac{76410824}{282174997} a^{11} + \frac{46895262}{282174997} a^{9} - \frac{8391441}{21705769} a^{7} - \frac{69971780}{282174997} a^{5} - \frac{78331166}{282174997} a^{3} + \frac{138739501}{282174997} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $23$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 197474123623.385 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_6$ (as 24T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2^2\times C_6$
Character table for $C_2^2\times C_6$ is not computed

Intermediate fields

\(\Q(\sqrt{35}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{15}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{3}, \sqrt{35})\), \(\Q(\sqrt{5}, \sqrt{7})\), \(\Q(\sqrt{15}, \sqrt{21})\), \(\Q(\sqrt{5}, \sqrt{21})\), \(\Q(\sqrt{7}, \sqrt{15})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{7})\), 6.6.134456000.1, 6.6.56723625.1, 6.6.4148928.1, 6.6.300125.1, \(\Q(\zeta_{28})^+\), \(\Q(\zeta_{21})^+\), 6.6.518616000.1, 8.8.31116960000.1, 12.12.13179165217344000000.2, 12.12.18078415936000000.1, 12.12.13179165217344000000.3, 12.12.3217569633140625.1, 12.12.13179165217344000000.1, 12.12.268962555456000000.1, \(\Q(\zeta_{84})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.12.26$x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$$2$$6$$12$$C_6\times C_2$$[2]^{6}$
2.12.12.26$x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$$2$$6$$12$$C_6\times C_2$$[2]^{6}$
$3$3.12.6.2$x^{12} + 108 x^{6} - 243 x^{2} + 2916$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
3.12.6.2$x^{12} + 108 x^{6} - 243 x^{2} + 2916$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$5$5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$7$7.12.10.1$x^{12} - 70 x^{6} + 35721$$6$$2$$10$$C_6\times C_2$$[\ ]_{6}^{2}$
7.12.10.1$x^{12} - 70 x^{6} + 35721$$6$$2$$10$$C_6\times C_2$$[\ ]_{6}^{2}$