Normalized defining polynomial
\( x^{24} - 33 x^{22} + 429 x^{20} - 2856 x^{18} + 10762 x^{16} - 24144 x^{14} + 33158 x^{12} - 28065 x^{10} + 14404 x^{8} - 4284 x^{6} + 676 x^{4} - 48 x^{2} + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(173690395826049922758414336000000000000=2^{24}\cdot 3^{12}\cdot 5^{12}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(420=2^{2}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{420}(1,·)$, $\chi_{420}(11,·)$, $\chi_{420}(391,·)$, $\chi_{420}(139,·)$, $\chi_{420}(269,·)$, $\chi_{420}(271,·)$, $\chi_{420}(209,·)$, $\chi_{420}(19,·)$, $\chi_{420}(341,·)$, $\chi_{420}(89,·)$, $\chi_{420}(71,·)$, $\chi_{420}(31,·)$, $\chi_{420}(289,·)$, $\chi_{420}(101,·)$, $\chi_{420}(359,·)$, $\chi_{420}(41,·)$, $\chi_{420}(199,·)$, $\chi_{420}(109,·)$, $\chi_{420}(239,·)$, $\chi_{420}(179,·)$, $\chi_{420}(361,·)$, $\chi_{420}(121,·)$, $\chi_{420}(169,·)$, $\chi_{420}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{533} a^{20} - \frac{73}{533} a^{18} + \frac{119}{533} a^{16} + \frac{50}{533} a^{14} + \frac{157}{533} a^{12} - \frac{44}{533} a^{10} + \frac{46}{533} a^{8} - \frac{248}{533} a^{6} - \frac{67}{533} a^{4} - \frac{64}{533} a^{2} + \frac{50}{533}$, $\frac{1}{533} a^{21} - \frac{73}{533} a^{19} + \frac{119}{533} a^{17} + \frac{50}{533} a^{15} + \frac{157}{533} a^{13} - \frac{44}{533} a^{11} + \frac{46}{533} a^{9} - \frac{248}{533} a^{7} - \frac{67}{533} a^{5} - \frac{64}{533} a^{3} + \frac{50}{533} a$, $\frac{1}{282174997} a^{22} - \frac{62943}{282174997} a^{20} - \frac{78057884}{282174997} a^{18} + \frac{98888264}{282174997} a^{16} + \frac{97010555}{282174997} a^{14} + \frac{93971624}{282174997} a^{12} - \frac{76410824}{282174997} a^{10} + \frac{46895262}{282174997} a^{8} - \frac{8391441}{21705769} a^{6} - \frac{69971780}{282174997} a^{4} - \frac{78331166}{282174997} a^{2} + \frac{138739501}{282174997}$, $\frac{1}{282174997} a^{23} - \frac{62943}{282174997} a^{21} - \frac{78057884}{282174997} a^{19} + \frac{98888264}{282174997} a^{17} + \frac{97010555}{282174997} a^{15} + \frac{93971624}{282174997} a^{13} - \frac{76410824}{282174997} a^{11} + \frac{46895262}{282174997} a^{9} - \frac{8391441}{21705769} a^{7} - \frac{69971780}{282174997} a^{5} - \frac{78331166}{282174997} a^{3} + \frac{138739501}{282174997} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 197474123623.385 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |