Properties

Label 24.24.1617617866...5625.1
Degree $24$
Signature $[24, 0]$
Discriminant $3^{12}\cdot 5^{18}\cdot 7^{20}$
Root discriminant $29.31$
Ramified primes $3, 5, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times C_{12}$ (as 24T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 32, -64, -528, 784, 3142, -4088, -9189, 11034, 15333, -17391, -15810, 17187, 10506, -11067, -4573, 4709, 1294, -1312, -229, 230, 23, -23, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 - x^23 - 23*x^22 + 23*x^21 + 230*x^20 - 229*x^19 - 1312*x^18 + 1294*x^17 + 4709*x^16 - 4573*x^15 - 11067*x^14 + 10506*x^13 + 17187*x^12 - 15810*x^11 - 17391*x^10 + 15333*x^9 + 11034*x^8 - 9189*x^7 - 4088*x^6 + 3142*x^5 + 784*x^4 - 528*x^3 - 64*x^2 + 32*x + 1)
 
gp: K = bnfinit(x^24 - x^23 - 23*x^22 + 23*x^21 + 230*x^20 - 229*x^19 - 1312*x^18 + 1294*x^17 + 4709*x^16 - 4573*x^15 - 11067*x^14 + 10506*x^13 + 17187*x^12 - 15810*x^11 - 17391*x^10 + 15333*x^9 + 11034*x^8 - 9189*x^7 - 4088*x^6 + 3142*x^5 + 784*x^4 - 528*x^3 - 64*x^2 + 32*x + 1, 1)
 

Normalized defining polynomial

\( x^{24} - x^{23} - 23 x^{22} + 23 x^{21} + 230 x^{20} - 229 x^{19} - 1312 x^{18} + 1294 x^{17} + 4709 x^{16} - 4573 x^{15} - 11067 x^{14} + 10506 x^{13} + 17187 x^{12} - 15810 x^{11} - 17391 x^{10} + 15333 x^{9} + 11034 x^{8} - 9189 x^{7} - 4088 x^{6} + 3142 x^{5} + 784 x^{4} - 528 x^{3} - 64 x^{2} + 32 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[24, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(161761786626698377317203521728515625=3^{12}\cdot 5^{18}\cdot 7^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $29.31$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(105=3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{105}(64,·)$, $\chi_{105}(1,·)$, $\chi_{105}(2,·)$, $\chi_{105}(4,·)$, $\chi_{105}(8,·)$, $\chi_{105}(73,·)$, $\chi_{105}(13,·)$, $\chi_{105}(79,·)$, $\chi_{105}(16,·)$, $\chi_{105}(82,·)$, $\chi_{105}(23,·)$, $\chi_{105}(89,·)$, $\chi_{105}(26,·)$, $\chi_{105}(92,·)$, $\chi_{105}(32,·)$, $\chi_{105}(97,·)$, $\chi_{105}(101,·)$, $\chi_{105}(103,·)$, $\chi_{105}(104,·)$, $\chi_{105}(41,·)$, $\chi_{105}(46,·)$, $\chi_{105}(52,·)$, $\chi_{105}(53,·)$, $\chi_{105}(59,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $23$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5459008653.485176 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{12}$ (as 24T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2\times C_{12}$
Character table for $C_2\times C_{12}$ is not computed

Intermediate fields

\(\Q(\sqrt{105}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{21}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{5}, \sqrt{21})\), \(\Q(\zeta_{15})^+\), 4.4.6125.1, 6.6.56723625.1, 6.6.300125.1, \(\Q(\zeta_{21})^+\), 8.8.3038765625.1, 12.12.3217569633140625.1, 12.12.8208085798828125.1, \(\Q(\zeta_{35})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ R R R ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$5$5.12.9.1$x^{12} - 10 x^{8} - 375 x^{4} - 2000$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
5.12.9.1$x^{12} - 10 x^{8} - 375 x^{4} - 2000$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
7Data not computed