Normalized defining polynomial
\( x^{24} - x^{23} - 84 x^{22} + 63 x^{21} + 2801 x^{20} - 1147 x^{19} - 49983 x^{18} + 2233 x^{17} + 532103 x^{16} + 159384 x^{15} - 3510649 x^{14} - 2098073 x^{13} + 14336745 x^{12} + 12003549 x^{11} - 35220104 x^{10} - 35548977 x^{9} + 50070137 x^{8} + 54635234 x^{7} - 41568187 x^{6} - 42464033 x^{5} + 21375788 x^{4} + 15045613 x^{3} - 6533360 x^{2} - 1549447 x + 651067 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1313089701153189172362017790113081686746246646817=13^{20}\cdot 17^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $101.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(221=13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{221}(1,·)$, $\chi_{221}(134,·)$, $\chi_{221}(55,·)$, $\chi_{221}(77,·)$, $\chi_{221}(16,·)$, $\chi_{221}(81,·)$, $\chi_{221}(212,·)$, $\chi_{221}(217,·)$, $\chi_{221}(152,·)$, $\chi_{221}(25,·)$, $\chi_{221}(155,·)$, $\chi_{221}(157,·)$, $\chi_{221}(35,·)$, $\chi_{221}(36,·)$, $\chi_{221}(168,·)$, $\chi_{221}(43,·)$, $\chi_{221}(49,·)$, $\chi_{221}(179,·)$, $\chi_{221}(118,·)$, $\chi_{221}(183,·)$, $\chi_{221}(120,·)$, $\chi_{221}(121,·)$, $\chi_{221}(127,·)$, $\chi_{221}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} - \frac{22}{47} a^{19} - \frac{6}{47} a^{18} + \frac{11}{47} a^{17} - \frac{7}{47} a^{16} + \frac{10}{47} a^{15} - \frac{13}{47} a^{14} + \frac{12}{47} a^{13} - \frac{12}{47} a^{12} - \frac{7}{47} a^{11} + \frac{15}{47} a^{10} + \frac{18}{47} a^{9} - \frac{5}{47} a^{8} - \frac{13}{47} a^{7} - \frac{6}{47} a^{6} + \frac{18}{47} a^{5} - \frac{13}{47} a^{4} - \frac{4}{47} a^{3} + \frac{11}{47} a^{2} - \frac{16}{47} a - \frac{19}{47}$, $\frac{1}{47} a^{21} - \frac{20}{47} a^{19} + \frac{20}{47} a^{18} - \frac{3}{47} a^{16} + \frac{19}{47} a^{15} + \frac{8}{47} a^{14} + \frac{17}{47} a^{13} + \frac{11}{47} a^{12} + \frac{2}{47} a^{11} + \frac{19}{47} a^{10} + \frac{15}{47} a^{9} + \frac{18}{47} a^{8} - \frac{10}{47} a^{7} - \frac{20}{47} a^{6} + \frac{7}{47} a^{5} - \frac{8}{47} a^{4} + \frac{17}{47} a^{3} - \frac{9}{47} a^{2} + \frac{5}{47} a + \frac{5}{47}$, $\frac{1}{84083} a^{22} + \frac{298}{84083} a^{21} - \frac{223}{84083} a^{20} - \frac{9699}{84083} a^{19} - \frac{31315}{84083} a^{18} - \frac{36640}{84083} a^{17} - \frac{14400}{84083} a^{16} - \frac{7029}{84083} a^{15} - \frac{1117}{84083} a^{14} + \frac{29055}{84083} a^{13} + \frac{41483}{84083} a^{12} + \frac{28168}{84083} a^{11} - \frac{690}{1789} a^{10} - \frac{35309}{84083} a^{9} + \frac{17978}{84083} a^{8} - \frac{18127}{84083} a^{7} + \frac{33006}{84083} a^{6} + \frac{25449}{84083} a^{5} - \frac{14580}{84083} a^{4} - \frac{3390}{84083} a^{3} - \frac{29397}{84083} a^{2} + \frac{1500}{84083} a - \frac{17119}{84083}$, $\frac{1}{398421145246261405961339977156793574087920402713103326367159} a^{23} - \frac{1114319420814205758180197904325148797104511769600834167}{398421145246261405961339977156793574087920402713103326367159} a^{22} + \frac{1202950629711374495076053110991133089501667121258023396380}{398421145246261405961339977156793574087920402713103326367159} a^{21} + \frac{2366078982514405809898644959675998559666483783127623860222}{398421145246261405961339977156793574087920402713103326367159} a^{20} + \frac{17470987786773721122198008073159866107374686602919596681064}{398421145246261405961339977156793574087920402713103326367159} a^{19} + \frac{136277847084250340286006584731226988446315081866168886420673}{398421145246261405961339977156793574087920402713103326367159} a^{18} + \frac{24121981899920111121002671339679196649351259316168757240152}{398421145246261405961339977156793574087920402713103326367159} a^{17} - \frac{121475904693158490223095385052217841679000862810222621715157}{398421145246261405961339977156793574087920402713103326367159} a^{16} + \frac{314268754229832677246850629248962539232172645247662583659}{398421145246261405961339977156793574087920402713103326367159} a^{15} - \frac{74266500714369610717341442703604731397545814092242320552208}{398421145246261405961339977156793574087920402713103326367159} a^{14} + \frac{45600046418493478316301121396000861552799859760382480438013}{398421145246261405961339977156793574087920402713103326367159} a^{13} + \frac{12595194563077805656505536037698986873494767849152067619618}{398421145246261405961339977156793574087920402713103326367159} a^{12} - \frac{90979839843839369318449203115928737892037891033804623079890}{398421145246261405961339977156793574087920402713103326367159} a^{11} - \frac{59523523511785235464356461453878684910201910219360196014298}{398421145246261405961339977156793574087920402713103326367159} a^{10} + \frac{104758036094696313752203595689099808151646348097621209471691}{398421145246261405961339977156793574087920402713103326367159} a^{9} - \frac{28540828557635745348100474137544392423717997505877348715180}{398421145246261405961339977156793574087920402713103326367159} a^{8} - \frac{173053610228765968553114215653009691030357456541379329337821}{398421145246261405961339977156793574087920402713103326367159} a^{7} - \frac{46694087759841551409314582352354911915207043346246605830247}{398421145246261405961339977156793574087920402713103326367159} a^{6} - \frac{105890779586204686478020680998366981423995384340635606321231}{398421145246261405961339977156793574087920402713103326367159} a^{5} + \frac{45524587385255688735403586078051573064466391251745575199888}{398421145246261405961339977156793574087920402713103326367159} a^{4} - \frac{24540287224601302225201908001291752790506117681558389283873}{398421145246261405961339977156793574087920402713103326367159} a^{3} + \frac{21624748784191213998940885361165286090297474475300114014562}{398421145246261405961339977156793574087920402713103326367159} a^{2} + \frac{163613734402694545848516884312200961080809841890115800434297}{398421145246261405961339977156793574087920402713103326367159} a + \frac{53546948587116432044021098432502118447882762557774682686967}{398421145246261405961339977156793574087920402713103326367159}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20074475366539372 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 3.3.169.1, 4.4.4913.1, 6.6.140320193.1, 8.8.11719682839553.1, 12.12.96735773996756764337.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{3}$ | $24$ | $24$ | R | R | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | $24$ | $24$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{3}$ | $24$ | $24$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 17 | Data not computed | ||||||