Normalized defining polynomial
\( x^{24} - 45 x^{22} - 4 x^{21} + 819 x^{20} + 132 x^{19} - 7783 x^{18} - 1692 x^{17} + 41631 x^{16} + 10764 x^{15} - 126369 x^{14} - 36012 x^{13} + 211167 x^{12} + 62388 x^{11} - 185646 x^{10} - 56140 x^{9} + 83349 x^{8} + 24507 x^{7} - 18724 x^{6} - 4968 x^{5} + 1995 x^{4} + 424 x^{3} - 90 x^{2} - 12 x + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(128028748427622359924863503266793533356497=3^{32}\cdot 17^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(153=3^{2}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{153}(64,·)$, $\chi_{153}(1,·)$, $\chi_{153}(67,·)$, $\chi_{153}(4,·)$, $\chi_{153}(70,·)$, $\chi_{153}(76,·)$, $\chi_{153}(13,·)$, $\chi_{153}(16,·)$, $\chi_{153}(145,·)$, $\chi_{153}(19,·)$, $\chi_{153}(151,·)$, $\chi_{153}(25,·)$, $\chi_{153}(94,·)$, $\chi_{153}(100,·)$, $\chi_{153}(103,·)$, $\chi_{153}(106,·)$, $\chi_{153}(43,·)$, $\chi_{153}(49,·)$, $\chi_{153}(115,·)$, $\chi_{153}(52,·)$, $\chi_{153}(118,·)$, $\chi_{153}(55,·)$, $\chi_{153}(121,·)$, $\chi_{153}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{378306675502303071398085545224554737} a^{23} + \frac{166696513998291653232651827014502456}{378306675502303071398085545224554737} a^{22} - \frac{80258515865554001512031890615097837}{378306675502303071398085545224554737} a^{21} + \frac{74910079712383370945038735518607944}{378306675502303071398085545224554737} a^{20} - \frac{176213530082876468325386999067783950}{378306675502303071398085545224554737} a^{19} - \frac{176054618356105719164835052654808979}{378306675502303071398085545224554737} a^{18} - \frac{131519271064972140549773597584593562}{378306675502303071398085545224554737} a^{17} + \frac{128694555704573727601348519329091371}{378306675502303071398085545224554737} a^{16} + \frac{86141807643069871785546297157632617}{378306675502303071398085545224554737} a^{15} - \frac{74748607728494152530005875691016516}{378306675502303071398085545224554737} a^{14} + \frac{183281007092872619322361834157588581}{378306675502303071398085545224554737} a^{13} + \frac{99794821359111223626895926642470692}{378306675502303071398085545224554737} a^{12} + \frac{44838904540027529681179217323209227}{378306675502303071398085545224554737} a^{11} + \frac{152727856552119109204886472444986071}{378306675502303071398085545224554737} a^{10} - \frac{21784265066905589500603881626358346}{378306675502303071398085545224554737} a^{9} - \frac{52332756136993304531731965049701023}{378306675502303071398085545224554737} a^{8} - \frac{32437445009661604640947698104630561}{378306675502303071398085545224554737} a^{7} + \frac{59346276957710248751956628210976146}{378306675502303071398085545224554737} a^{6} + \frac{134991017087438194638247530076563456}{378306675502303071398085545224554737} a^{5} + \frac{50801498813711671179860484141721165}{378306675502303071398085545224554737} a^{4} + \frac{98784380562228105740545136287890435}{378306675502303071398085545224554737} a^{3} + \frac{72924855862895952593036166208162096}{378306675502303071398085545224554737} a^{2} - \frac{48074842754807292037106218578595405}{378306675502303071398085545224554737} a + \frac{131613847938353394322834448743552639}{378306675502303071398085545224554737}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5894416573994.629 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\zeta_{9})^+\), 4.4.4913.1, 6.6.32234193.1, \(\Q(\zeta_{17})^+\), 12.12.5104819233548816337.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | R | $24$ | $24$ | $24$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{6}$ | $24$ | $24$ | $24$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{3}$ | $24$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |