Normalized defining polynomial
\( x^{24} - 73 x^{22} + 2117 x^{20} - 31682 x^{18} + 266304 x^{16} - 1295531 x^{14} + 3704020 x^{12} - 6199963 x^{10} + 5868543 x^{8} - 2893939 x^{6} + 634370 x^{4} - 39128 x^{2} + 73 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[24, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(120544022255782810184584905234140888334894547075072=2^{24}\cdot 73^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $122.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(292=2^{2}\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{292}(1,·)$, $\chi_{292}(83,·)$, $\chi_{292}(97,·)$, $\chi_{292}(81,·)$, $\chi_{292}(7,·)$, $\chi_{292}(9,·)$, $\chi_{292}(139,·)$, $\chi_{292}(271,·)$, $\chi_{292}(145,·)$, $\chi_{292}(275,·)$, $\chi_{292}(149,·)$, $\chi_{292}(137,·)$, $\chi_{292}(103,·)$, $\chi_{292}(95,·)$, $\chi_{292}(289,·)$, $\chi_{292}(163,·)$, $\chi_{292}(65,·)$, $\chi_{292}(167,·)$, $\chi_{292}(43,·)$, $\chi_{292}(173,·)$, $\chi_{292}(49,·)$, $\chi_{292}(51,·)$, $\chi_{292}(265,·)$, $\chi_{292}(63,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{5}$, $\frac{1}{12} a^{14} + \frac{1}{3} a^{6} - \frac{1}{4}$, $\frac{1}{12} a^{15} + \frac{1}{3} a^{7} - \frac{1}{4} a$, $\frac{1}{36} a^{16} - \frac{1}{9} a^{8} + \frac{1}{4} a^{2} + \frac{1}{9}$, $\frac{1}{36} a^{17} - \frac{1}{9} a^{9} + \frac{1}{4} a^{3} + \frac{1}{9} a$, $\frac{1}{36} a^{18} - \frac{1}{9} a^{10} + \frac{1}{4} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{36} a^{19} - \frac{1}{9} a^{11} + \frac{1}{4} a^{5} + \frac{1}{9} a^{3}$, $\frac{1}{91692} a^{20} - \frac{209}{22923} a^{18} - \frac{595}{91692} a^{16} - \frac{11}{5094} a^{14} - \frac{3445}{22923} a^{12} + \frac{1361}{22923} a^{10} + \frac{3067}{22923} a^{8} - \frac{1097}{3396} a^{6} - \frac{9392}{22923} a^{4} - \frac{23087}{91692} a^{2} + \frac{18235}{45846}$, $\frac{1}{91692} a^{21} - \frac{209}{22923} a^{19} - \frac{595}{91692} a^{17} - \frac{11}{5094} a^{15} - \frac{3445}{22923} a^{13} + \frac{1361}{22923} a^{11} + \frac{3067}{22923} a^{9} - \frac{1097}{3396} a^{7} - \frac{9392}{22923} a^{5} - \frac{23087}{91692} a^{3} + \frac{18235}{45846} a$, $\frac{1}{416108055908530220112} a^{22} - \frac{429998500405297}{208054027954265110056} a^{20} + \frac{4992347354534977523}{416108055908530220112} a^{18} + \frac{840959891857733389}{138702685302843406704} a^{16} + \frac{14657370372269603621}{416108055908530220112} a^{14} + \frac{12256972186722548621}{104027013977132555028} a^{12} - \frac{898670204070325040}{26006753494283138757} a^{10} - \frac{5535821511570975769}{138702685302843406704} a^{8} + \frac{8125237418339566313}{208054027954265110056} a^{6} - \frac{102091996204400144345}{416108055908530220112} a^{4} + \frac{8578047514313012615}{416108055908530220112} a^{2} - \frac{43663756464916730993}{138702685302843406704}$, $\frac{1}{416108055908530220112} a^{23} - \frac{429998500405297}{208054027954265110056} a^{21} + \frac{4992347354534977523}{416108055908530220112} a^{19} + \frac{840959891857733389}{138702685302843406704} a^{17} + \frac{14657370372269603621}{416108055908530220112} a^{15} + \frac{12256972186722548621}{104027013977132555028} a^{13} - \frac{898670204070325040}{26006753494283138757} a^{11} - \frac{5535821511570975769}{138702685302843406704} a^{9} + \frac{8125237418339566313}{208054027954265110056} a^{7} - \frac{102091996204400144345}{416108055908530220112} a^{5} + \frac{8578047514313012615}{416108055908530220112} a^{3} - \frac{43663756464916730993}{138702685302843406704} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 350191229019042400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 3.3.5329.1, 4.4.389017.1, 6.6.2073071593.1, 8.8.2828134020888832.1, 12.12.313726685568359708377.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{6}$ | $24$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{3}$ | $24$ | $24$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | $24$ | $24$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{3}$ | $24$ | $24$ | $24$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 73 | Data not computed | ||||||