Normalized defining polynomial
\( x^{24} - 53 x^{20} + 2631 x^{16} - 9432 x^{12} + 31631 x^{8} - 178 x^{4} + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(99537902621050480929474090019571367936=2^{48}\cdot 3^{12}\cdot 13^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(312=2^{3}\cdot 3\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{312}(1,·)$, $\chi_{312}(131,·)$, $\chi_{312}(133,·)$, $\chi_{312}(263,·)$, $\chi_{312}(139,·)$, $\chi_{312}(269,·)$, $\chi_{312}(79,·)$, $\chi_{312}(209,·)$, $\chi_{312}(211,·)$, $\chi_{312}(217,·)$, $\chi_{312}(157,·)$, $\chi_{312}(287,·)$, $\chi_{312}(107,·)$, $\chi_{312}(289,·)$, $\chi_{312}(35,·)$, $\chi_{312}(295,·)$, $\chi_{312}(235,·)$, $\chi_{312}(29,·)$, $\chi_{312}(113,·)$, $\chi_{312}(53,·)$, $\chi_{312}(55,·)$, $\chi_{312}(185,·)$, $\chi_{312}(61,·)$, $\chi_{312}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{4} + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{5} + \frac{1}{5} a$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{3}$, $\frac{1}{125} a^{16} + \frac{8}{125} a^{12} - \frac{2}{125} a^{8} - \frac{22}{125} a^{4} + \frac{31}{125}$, $\frac{1}{125} a^{17} + \frac{8}{125} a^{13} - \frac{2}{125} a^{9} - \frac{22}{125} a^{5} + \frac{31}{125} a$, $\frac{1}{125} a^{18} + \frac{8}{125} a^{14} - \frac{2}{125} a^{10} - \frac{22}{125} a^{6} + \frac{31}{125} a^{2}$, $\frac{1}{125} a^{19} + \frac{8}{125} a^{15} - \frac{2}{125} a^{11} - \frac{22}{125} a^{7} + \frac{31}{125} a^{3}$, $\frac{1}{10401465875} a^{20} - \frac{25120571}{10401465875} a^{16} + \frac{714782016}{10401465875} a^{12} + \frac{560501036}{10401465875} a^{8} - \frac{3686436506}{10401465875} a^{4} - \frac{2780113149}{10401465875}$, $\frac{1}{10401465875} a^{21} - \frac{25120571}{10401465875} a^{17} + \frac{714782016}{10401465875} a^{13} + \frac{560501036}{10401465875} a^{9} - \frac{3686436506}{10401465875} a^{5} - \frac{2780113149}{10401465875} a$, $\frac{1}{10401465875} a^{22} - \frac{25120571}{10401465875} a^{18} + \frac{714782016}{10401465875} a^{14} + \frac{560501036}{10401465875} a^{10} - \frac{3686436506}{10401465875} a^{6} - \frac{2780113149}{10401465875} a^{2}$, $\frac{1}{10401465875} a^{23} - \frac{25120571}{10401465875} a^{19} + \frac{714782016}{10401465875} a^{15} + \frac{560501036}{10401465875} a^{11} - \frac{3686436506}{10401465875} a^{7} - \frac{2780113149}{10401465875} a^{3}$
Class group and class number
$C_{39}$, which has order $39$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2853609136}{10401465875} a^{23} + \frac{151225243418}{10401465875} a^{19} - \frac{1501399193336}{2080293175} a^{15} + \frac{5374612492536}{2080293175} a^{11} - \frac{90112408349173}{10401465875} a^{7} + \frac{849670136}{10401465875} a^{3} \) (order $24$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 381194856.24035984 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |