Normalized defining polynomial
\( x^{24} - x^{23} - 3 x^{22} + 10 x^{21} - 10 x^{20} - 30 x^{19} + 127 x^{18} + 210 x^{17} - 718 x^{16} + 529 x^{15} + 1830 x^{14} - 7990 x^{13} + 8719 x^{12} + 23970 x^{11} + 16470 x^{10} - 14283 x^{9} - 58158 x^{8} - 51030 x^{7} + 92583 x^{6} + 65610 x^{5} - 65610 x^{4} - 196830 x^{3} - 177147 x^{2} + 177147 x + 531441 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(987952545632990645956882874687477121=3^{12}\cdot 7^{20}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(273=3\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{273}(64,·)$, $\chi_{273}(1,·)$, $\chi_{273}(194,·)$, $\chi_{273}(131,·)$, $\chi_{273}(142,·)$, $\chi_{273}(79,·)$, $\chi_{273}(272,·)$, $\chi_{273}(209,·)$, $\chi_{273}(25,·)$, $\chi_{273}(155,·)$, $\chi_{273}(92,·)$, $\chi_{273}(157,·)$, $\chi_{273}(38,·)$, $\chi_{273}(103,·)$, $\chi_{273}(40,·)$, $\chi_{273}(220,·)$, $\chi_{273}(170,·)$, $\chi_{273}(235,·)$, $\chi_{273}(116,·)$, $\chi_{273}(53,·)$, $\chi_{273}(118,·)$, $\chi_{273}(233,·)$, $\chi_{273}(248,·)$, $\chi_{273}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{873} a^{14} - \frac{1}{9} a^{13} + \frac{1}{3} a^{12} + \frac{4}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{3} a^{9} + \frac{4}{9} a^{8} + \frac{137}{291} a^{7} - \frac{1}{9} a^{6} - \frac{2}{9} a^{5} - \frac{1}{3} a^{4} - \frac{1}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a + \frac{48}{97}$, $\frac{1}{2619} a^{15} - \frac{1}{2619} a^{14} - \frac{1}{9} a^{13} - \frac{5}{27} a^{12} - \frac{4}{27} a^{11} - \frac{1}{9} a^{10} + \frac{4}{27} a^{9} + \frac{331}{873} a^{8} + \frac{74}{2619} a^{7} + \frac{1}{27} a^{6} - \frac{2}{9} a^{5} - \frac{1}{27} a^{4} + \frac{10}{27} a^{3} - \frac{2}{9} a^{2} + \frac{145}{291} a - \frac{16}{97}$, $\frac{1}{7857} a^{16} - \frac{1}{7857} a^{15} - \frac{1}{2619} a^{14} + \frac{4}{81} a^{13} - \frac{4}{81} a^{12} - \frac{4}{27} a^{11} - \frac{14}{81} a^{10} - \frac{542}{2619} a^{9} - \frac{799}{7857} a^{8} - \frac{2009}{7857} a^{7} + \frac{1}{27} a^{6} - \frac{37}{81} a^{5} + \frac{37}{81} a^{4} + \frac{10}{27} a^{3} + \frac{113}{291} a^{2} - \frac{113}{291} a - \frac{16}{97}$, $\frac{1}{23571} a^{17} - \frac{1}{23571} a^{16} - \frac{1}{7857} a^{15} + \frac{10}{23571} a^{14} - \frac{31}{243} a^{13} - \frac{4}{81} a^{12} + \frac{94}{243} a^{11} - \frac{1415}{7857} a^{10} - \frac{8656}{23571} a^{9} - \frac{7247}{23571} a^{8} - \frac{1928}{7857} a^{7} + \frac{98}{243} a^{6} - \frac{17}{243} a^{5} + \frac{37}{81} a^{4} + \frac{16}{873} a^{3} + \frac{275}{873} a^{2} - \frac{113}{291} a + \frac{7}{97}$, $\frac{1}{282852} a^{18} - \frac{1}{70713} a^{17} + \frac{19}{282852} a^{15} - \frac{10}{70713} a^{14} - \frac{599}{2916} a^{12} - \frac{1969}{7857} a^{11} - \frac{12730}{70713} a^{10} - \frac{1265}{2916} a^{9} + \frac{73}{291} a^{8} + \frac{14126}{70713} a^{7} + \frac{337}{2916} a^{6} - \frac{1540}{7857} a^{4} - \frac{2683}{10476} a^{3} + \frac{127}{291} a - \frac{171}{388}$, $\frac{1}{24556362084} a^{19} + \frac{20737}{12278181042} a^{18} + \frac{3778}{2046363507} a^{17} - \frac{211229}{24556362084} a^{16} + \frac{77149}{12278181042} a^{15} + \frac{37780}{2046363507} a^{14} + \frac{19117345}{253158372} a^{13} - \frac{110026013}{4092727014} a^{12} + \frac{856123844}{6139090521} a^{11} - \frac{3649872857}{24556362084} a^{10} - \frac{693609497}{4092727014} a^{9} + \frac{2604919289}{6139090521} a^{8} - \frac{10986764099}{24556362084} a^{7} - \frac{636593}{42193062} a^{6} - \frac{179420500}{682121169} a^{5} + \frac{45534797}{101054988} a^{4} + \frac{5068187}{151582482} a^{3} - \frac{12357083}{25263747} a^{2} + \frac{2508313}{33684996} a - \frac{409913}{5614166}$, $\frac{1}{73669086252} a^{20} - \frac{1}{73669086252} a^{19} - \frac{11735}{12278181042} a^{18} - \frac{65609}{73669086252} a^{17} + \frac{347237}{73669086252} a^{16} - \frac{49337}{12278181042} a^{15} - \frac{656063}{73669086252} a^{14} - \frac{3651484547}{24556362084} a^{13} - \frac{10852182647}{36834543126} a^{12} - \frac{11564369309}{73669086252} a^{11} - \frac{10979535173}{24556362084} a^{10} - \frac{17332551431}{36834543126} a^{9} + \frac{32389359649}{73669086252} a^{8} - \frac{11934537827}{24556362084} a^{7} + \frac{1052974697}{4092727014} a^{6} + \frac{122269745}{2728484676} a^{5} - \frac{132705539}{909494892} a^{4} - \frac{40340921}{151582482} a^{3} - \frac{33479675}{101054988} a^{2} - \frac{14997095}{33684996} a + \frac{1601317}{5614166}$, $\frac{1}{221007258756} a^{21} - \frac{1}{221007258756} a^{20} - \frac{1}{73669086252} a^{19} + \frac{19537}{55251814689} a^{18} + \frac{1273337}{221007258756} a^{17} - \frac{528643}{73669086252} a^{16} - \frac{818237}{55251814689} a^{15} - \frac{19794215}{73669086252} a^{14} - \frac{27284847559}{221007258756} a^{13} - \frac{21598608686}{55251814689} a^{12} + \frac{17889859087}{73669086252} a^{11} + \frac{78964461875}{221007258756} a^{10} - \frac{21563797091}{55251814689} a^{9} + \frac{15311403025}{73669086252} a^{8} - \frac{3542596813}{8185454028} a^{7} + \frac{756298423}{2046363507} a^{6} - \frac{325621601}{909494892} a^{5} - \frac{85196443}{909494892} a^{4} + \frac{1592387}{75791241} a^{3} - \frac{523479}{11228332} a^{2} - \frac{3241199}{33684996} a - \frac{4349529}{11228332}$, $\frac{1}{663021776268} a^{22} - \frac{1}{663021776268} a^{21} - \frac{1}{221007258756} a^{20} + \frac{5}{331510888134} a^{19} + \frac{67463}{663021776268} a^{18} + \frac{3181049}{221007258756} a^{17} - \frac{4906471}{331510888134} a^{16} - \frac{33424445}{221007258756} a^{15} + \frac{167547377}{663021776268} a^{14} + \frac{36513914975}{331510888134} a^{13} - \frac{72483773303}{221007258756} a^{12} + \frac{180484800887}{663021776268} a^{11} - \frac{164244342223}{331510888134} a^{10} + \frac{95336793475}{221007258756} a^{9} + \frac{10509450667}{24556362084} a^{8} - \frac{1101764693}{12278181042} a^{7} - \frac{53335757}{8185454028} a^{6} - \frac{193158361}{909494892} a^{5} - \frac{39665603}{454747446} a^{4} + \frac{112710803}{303164964} a^{3} + \frac{4475901}{11228332} a^{2} - \frac{1063677}{11228332} a + \frac{2249037}{5614166}$, $\frac{1}{1989065328804} a^{23} - \frac{1}{1989065328804} a^{22} - \frac{1}{663021776268} a^{21} + \frac{5}{994532664402} a^{20} - \frac{5}{994532664402} a^{19} + \frac{490369}{331510888134} a^{18} + \frac{12694505}{994532664402} a^{17} - \frac{18212329}{331510888134} a^{16} + \frac{8272333}{994532664402} a^{15} + \frac{235119167}{994532664402} a^{14} - \frac{5878186705}{331510888134} a^{13} + \frac{253027656847}{994532664402} a^{12} - \frac{1820714329}{994532664402} a^{11} - \frac{130959612271}{331510888134} a^{10} + \frac{13319435051}{36834543126} a^{9} - \frac{2825473679}{36834543126} a^{8} + \frac{5668354513}{12278181042} a^{7} - \frac{331785605}{1364242338} a^{6} + \frac{498806995}{1364242338} a^{5} + \frac{74136901}{454747446} a^{4} - \frac{20601347}{50527494} a^{3} + \frac{42618481}{101054988} a^{2} + \frac{13729625}{33684996} a + \frac{2414473}{11228332}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{101054988} a^{23} - \frac{59541067}{101054988} a^{2} \) (order $42$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 91734319.3933256 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |