Normalized defining polynomial
\( x^{24} + 50 x^{18} + 2375 x^{12} + 6250 x^{6} + 15625 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9606056659007943744000000000000000000=2^{24}\cdot 3^{36}\cdot 5^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(180=2^{2}\cdot 3^{2}\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{180}(1,·)$, $\chi_{180}(67,·)$, $\chi_{180}(7,·)$, $\chi_{180}(143,·)$, $\chi_{180}(83,·)$, $\chi_{180}(149,·)$, $\chi_{180}(23,·)$, $\chi_{180}(89,·)$, $\chi_{180}(103,·)$, $\chi_{180}(29,·)$, $\chi_{180}(107,·)$, $\chi_{180}(161,·)$, $\chi_{180}(163,·)$, $\chi_{180}(101,·)$, $\chi_{180}(167,·)$, $\chi_{180}(41,·)$, $\chi_{180}(43,·)$, $\chi_{180}(109,·)$, $\chi_{180}(47,·)$, $\chi_{180}(49,·)$, $\chi_{180}(169,·)$, $\chi_{180}(121,·)$, $\chi_{180}(61,·)$, $\chi_{180}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{500} a^{12} - \frac{1}{20} a^{6} + \frac{1}{4}$, $\frac{1}{500} a^{13} - \frac{1}{20} a^{7} + \frac{1}{4} a$, $\frac{1}{500} a^{14} - \frac{1}{100} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{500} a^{15} - \frac{1}{100} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{2500} a^{16} - \frac{1}{100} a^{10} + \frac{1}{20} a^{4}$, $\frac{1}{2500} a^{17} - \frac{1}{100} a^{11} + \frac{1}{20} a^{5}$, $\frac{1}{47500} a^{18} + \frac{29}{76}$, $\frac{1}{47500} a^{19} + \frac{29}{76} a$, $\frac{1}{237500} a^{20} + \frac{21}{76} a^{2}$, $\frac{1}{237500} a^{21} + \frac{21}{76} a^{3}$, $\frac{1}{237500} a^{22} + \frac{29}{380} a^{4}$, $\frac{1}{237500} a^{23} + \frac{29}{380} a^{5}$
Class group and class number
$C_{5}\times C_{10}$, which has order $50$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{237500} a^{22} - \frac{199}{380} a^{4} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 136791199.54421148 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||