Properties

Label 24.0.96060566590...0000.1
Degree $24$
Signature $[0, 12]$
Discriminant $2^{24}\cdot 3^{36}\cdot 5^{18}$
Root discriminant $34.75$
Ramified primes $2, 3, 5$
Class number $150$ (GRH)
Class group $[5, 30]$ (GRH)
Galois group $C_2\times C_{12}$ (as 24T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 216, 0, 2250, 0, 9393, 0, 21087, 0, 28743, 0, 25298, 0, 14823, 0, 5832, 0, 1521, 0, 252, 0, 24, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 + 24*x^22 + 252*x^20 + 1521*x^18 + 5832*x^16 + 14823*x^14 + 25298*x^12 + 28743*x^10 + 21087*x^8 + 9393*x^6 + 2250*x^4 + 216*x^2 + 1)
 
gp: K = bnfinit(x^24 + 24*x^22 + 252*x^20 + 1521*x^18 + 5832*x^16 + 14823*x^14 + 25298*x^12 + 28743*x^10 + 21087*x^8 + 9393*x^6 + 2250*x^4 + 216*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{24} + 24 x^{22} + 252 x^{20} + 1521 x^{18} + 5832 x^{16} + 14823 x^{14} + 25298 x^{12} + 28743 x^{10} + 21087 x^{8} + 9393 x^{6} + 2250 x^{4} + 216 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 12]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(9606056659007943744000000000000000000=2^{24}\cdot 3^{36}\cdot 5^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.75$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(180=2^{2}\cdot 3^{2}\cdot 5\)
Dirichlet character group:    $\lbrace$$\chi_{180}(1,·)$, $\chi_{180}(113,·)$, $\chi_{180}(137,·)$, $\chi_{180}(139,·)$, $\chi_{180}(109,·)$, $\chi_{180}(77,·)$, $\chi_{180}(143,·)$, $\chi_{180}(17,·)$, $\chi_{180}(19,·)$, $\chi_{180}(23,·)$, $\chi_{180}(79,·)$, $\chi_{180}(31,·)$, $\chi_{180}(91,·)$, $\chi_{180}(167,·)$, $\chi_{180}(169,·)$, $\chi_{180}(107,·)$, $\chi_{180}(173,·)$, $\chi_{180}(47,·)$, $\chi_{180}(49,·)$, $\chi_{180}(83,·)$, $\chi_{180}(53,·)$, $\chi_{180}(121,·)$, $\chi_{180}(151,·)$, $\chi_{180}(61,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{5}\times C_{30}$, which has order $150$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( a^{15} + 15 a^{13} + 90 a^{11} + 275 a^{9} + 450 a^{7} + 378 a^{5} + 140 a^{3} + 15 a \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4249664.47225837 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{12}$ (as 24T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2\times C_{12}$
Character table for $C_2\times C_{12}$ is not computed

Intermediate fields

\(\Q(\sqrt{-5}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{9})^+\), \(\Q(i, \sqrt{5})\), \(\Q(\zeta_{15})^+\), 4.0.18000.1, 6.0.52488000.1, 6.6.820125.1, 6.0.419904.1, 8.0.324000000.1, 12.0.2754990144000000.1, \(\Q(\zeta_{45})^+\), 12.0.3099363912000000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/13.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{8}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.12.18.74$x^{12} - 6 x^{11} - 3 x^{10} - 12 x^{9} + 9 x^{8} + 9 x^{7} + 12 x^{6} - 9 x^{3} - 9$$6$$2$$18$$C_{12}$$[2]_{2}^{2}$
3.12.18.74$x^{12} - 6 x^{11} - 3 x^{10} - 12 x^{9} + 9 x^{8} + 9 x^{7} + 12 x^{6} - 9 x^{3} - 9$$6$$2$$18$$C_{12}$$[2]_{2}^{2}$
$5$5.12.9.1$x^{12} - 10 x^{8} - 375 x^{4} - 2000$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
5.12.9.1$x^{12} - 10 x^{8} - 375 x^{4} - 2000$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$